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Preface i

Preface

MRS is a logic programming system with extensive meta-level facilities. As such it can be used
to implement virtually all kinds of artificial intelligence applications in & wide variety of architectures.
This guide is intended to be a comprehensive text azd reference for MRS. It also attempts to explain
the foundations of the logic programming approach from the ground up, and it is hoped that it will
thus provide accezs, even for the uninitiated, to all the benefits of Al methods. The only prerequisites
for understanding MRS are a passing acquaintance with LISP and an open mind.

The first part of the book deals with the principles and basic commands of MRS, and is sufficient
to allow the reader to begin creating fairly complex systems. The second part covers the advanced
featurce of MRS that enable the user to tailor the system to her own needs and increase performance
and functionality as desired. The best way to read the book is to try out everything on the terminal
as soon as it is introduced, or even to be developirg an application concurrently with learning the
material. There are several exercises provided which are not the least bit optional. They are however
non-trivial, so don’t be alarmed if some of them seem daunting. In the author’s opinion, the style
of programming induced by MRS is far more natural and uncomplicated thau traditional methods,
and it is only the corrupting influence of previous education that makes logic programming seem a
little strange at first.

The author would like to thank Prof. Michael Genesereth and the other authors of MRS; Russ
Greiner, Matt Ginsberg, Leonor Abraido-Fandifio, Ben Grosof and René Bach for numerous useful
suggestions and diligent reading; and Eric Berglund for help with the figures.
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2 The Compleat Guide to MRS

Chapter 1
Introduction

What is MR3? Good question. MRS stands for Meta-level Representation System. If your
response to this is a knowing nod of understanding you can probably skip the first few chapters.
In a sense, MRS is a computer language, in that one enters text in a designated syntax and it
gets processed and produces answers (or not). But becavse MRS is also able to reason with the
information you give it, the ®program® you entrr can be seen more as representing facts than
specifying a process. The importance and utility of this difference will become clear.

§1.1 Problems problems problems

Like all computer languages, MRS is a tool for solving problems. By the time you have mastered it,
you will know how to use it to solve some Very Difficult Problems Indeed. But unlike moat computer
languages, MRS doesn’t require that you know exactly how to solve a problem before it can help
you. This distinction is not iron-clad -= if the claims of Al have any merit then Turing-equivalence
asaures us that Albert Einstein could be implemented in BASIC too — but the normal style of
problem-sclving in MRS is radically different from that in FORTRAN or even LISP. Yes, even today
people say things like *The great thing about computers is tha’ they inake sure you know ezactly
bow to solve a problem.” You may or may not agree that this is a great thing, but with the advent
of MRS (and, I suppose, some other systems too) it’s no longer true.
The (somewhat idealised) traditional process of computer use goes something liks this:

1. Identify the problem.

2. Assemble what you know abous is.

3. Decide on dsta structures to correspond to things in the problem.

4. Figure how to process those structures to produce the desired answer.
8. Encode the process step by step in your favourite language.

6. Get the computer to execute the process,

whereas the happy MRS user can just do the fol]av:ing:

1. Identify the problem.

2. Asssmble what rou know about it.

8’. Encode what you know about it in MRS.
4'. Get MRS to figure out the solution.

That, at least, is the plan. The key problem faced by the experienced programmer coming to
MRS is that she can’t stop herself from doing steps 1-4 from the old tradition, then trying 5 ir
MRS, whereupon she concludes that it’s no better than Pascal, has a lot of silly parentheses and
doesn’t even have loops. '

The new regimen places more emphasis on stage 2, assembling what you know about the
problem, which is often overlocked in the old ways with disastrcas results in 6. It should already be
clear that less effort is really required in the basic procedure for solving problems in MRS; but as
any Real World Programmer will tell you, that’s not the whole story. Debugging and maintenance
are apparently non-trivial affairs. Debugging is changed as foliows: clearly if all you have is facts,
then you can only get the wrong answess if some of the facts are false. Not only is it unlikely that
you would type a false fact in the first place {apart from typographical inaccuracies), but it is also
considerably easier to notice that a fact is false than it is to decide exactly how it is that the twelve-
page procedure you have just coded doesn’t correspond to the solution process you had in mind,
even if the solution process was correct in the first place. Maintenance is also considerably eased: if
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ecme {acts about the problem clange, the enlightened MRS user changes the corresponding facts in
his system; the traditional programmer cuases loudly, tries to find all those places in the program
where the solution process relied on the truth of the original facts, and prays that the changes won't
have more than the usual numbes of side-efects.

Given that MRS isn’t yet Albert Einstein, this has becn an idealized version of the truth, but
it illustrates the basic approach that skould be followed in producing applications using MRS.

§1.2 Logic doesn’t rhyme with Magic

You may suspect that the stage 3’ above, *Encode these facts in MRS®, is not quite as straightforward
as all that. But facts are being encoded all the time; in fact you’re 1:ading fact-2ncodings right now
(or not, depending on your philosophical inclinations). To see that a fact is diferent from a sentence,
recall that the same fact could be expres.ed with different seatences, e.g.

John is taller than Ken
Ken is shorter than John

or even
Ken est plus petit que John.

Some of the linguistic philosophers in the audience may disagres with it, but this simplistic approach
is all that’s necessary for understanding MRS.

For centuries, philosophers have tried to devise formal languages for encoding facts about the
world so that strict rules could be applied for deriving new facts frora old. In this wzy, valid
arguments could be distinguished from invalid. The schemes of propositional and predicate calculus,
originating in the work of Frege, are the currently accepted standard. The important thing about
these schemes is not the particular syntax employed or the applicable rules of inference, but their
way of viewing the world. ‘

According to predicate calculus, the universe, as it’s often called, consists of a fixed set of objects
(not necessarily finite). This universe is not usually the same as the whole Universe As We Know
It; in fact it's often a very small subset, for instance {John,Ken}. A key notion is that we have
independent access to the objects — we know what we mean by ‘John’. The objects reed not be
‘real’ things: unicorns, numbers, sets and Pepsis can inhabit universes too.

In the formal language, we will have constant symbols to refer to these objects — names, if
you like. For exzmple, I might use the constant symbols John and Ken or §12 and k535 to refer
to the objects John, Ken in the universe. Notice that even in English we still have to use such
symbols; strictly I should insert the real John and Ken into the text, but even modern computerised
typography doesn’t have such fonts. The point is that the idea of using symbols to refer to actual
objects is extremely natural.

In English, we often want to refer to objects that don’t have names of their own, such as John’s
left foot. Similar constructions are used in MRS, and are called terms. Terms are written with a
Junction symbol followed by its arguments, which are also terms; a constant symbol is a kind of term.
The whole lot is enclosed in parentheses. So we might write (LeftFoot0f John) or (LeftFootOf
(FatherOf Ken)) but probably not (FootOf Ken) unless we were in a world of molluscs: a term
refers to a unique object. It is essential to remember that terms are just fancy kinds of names; they
are nat computable expressions. )

Along with objects, there are relations. These enable you to say things about the objects, and
in fact that is basically all that can be said. In my universe {John,Ken} I might want to have the
relation of being taller than. Now whatever I might think about the meaning of such a relation,
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according to relaticnal semantics a relation is defined bv the eet of all tuples of objects which satisfy
the relation (its exfension). Thus, suppore my relation symbol for this relation is IsTallerThan.
Then in the {John,Ken} universn,

IsTallerThaa = {{John,Ken}}.
Now if Joha is also older than Ken,

Is01ldexThan = {{Sohn,Ken)}
80 IsTallerThan and IsOlderThan are the same relation. Gocd grief! Actually, this isn’c just
plain daft, it’s a salutary lesson in the art of expressing facts: from the point of view of a system
such as MRS containing such facts, the two relations are identical since one could exchznge the two
relation symbols througlkout and not affect the result of any computation. In fact you could replace
IsTallerThan by GOOC62 and still not change anything. The system really does not know that Jokn
1s taller than Ken. It just knows that IsTallerThaa is a binary relation which holds between Jokn
and Ken. For many purposes, however, it is nseful to pretend that the system ‘knows’® thess facts,
and no doubt this grave error is committed liberally throughout this book.

Notice that relations come in many different kinds: unary relatiors like

PlaysBaseball = {(John), (Ken)},
binary relations like IsTallexrThan, and in fact relations with any number of arguments.

All we need now to start encoding facts in our formal language is a syntax for combining relation
symbols with constants to express the fact that the relation holds for the objects referred to by the
constant symbols. The syntax used by MRS will be described in the next chapter, along with more
apparatus of predicate calculus that enables more complex facts about the universe to be expressed.
Chapter 4 will introduce the ideas involved in inferring new facts from old. These ideas are the kuy
to stage 4' of the MRS programming process, *Get MRS to figure out the solution®.

TE b
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Chapter 2
Representing knowledge in MRS

The preceding chapter introduced the idea of a formal language for expressing facts, but didn’t
actually express any. The reason for this is that to actually express a fact one needs to choose
a syntax; it is important to remember that t}.» syntax used is a somewhat arbitrary choice that
must be clearly distingnished from the ideas of representation discussed above. The choice of syntax
deperds on such things as readability and ease of manipulation by computer programs. Because
MRS is a LISP-based system, the syntax is chose : to mesh well with LISP. The following sections
discuse the actual syntax of MRS.

§2.1 Symbols

Any LISP atom can be used for constant, function or re’ .tion symbols, with a few exceptions:
= atoms beginning with & and $ have special uses which will be explained later;
- the atoms AND OR NOT IF should not be used as relations.

§2.2 Ground literals

Generally speaking, the expression of a fact in a formal language is called a proposition. The facts
that we didn’t express in Chapter 1 are called ground literals — they express that a given relation
holds between the given objects. Given the above hint -bout LISP, you can probably guess that
“John is taller than Ken” is expressed by

(IsTallerThan John Ken).

Terms with function symbols such as (Pather0f Ken) can appear in the same places as constants,
so since John is Ken'’s father,

(IsTallerThan (Father0f Ken) Ken)
expiesses the same fact. Since terms can be arbitrarily nested, we could say
(PlaysBaseball (Father0Of (NotherOf (Father9f Niranda)))).

§2.3 Equality
A relation with a special meaning in MRS is the equality relation =,
(= <termi> <term2>)

is true if and only if the two terms refer to the same object in the universe. Thus (= John John)
is automatically true; (= (FatherOf Ken) John) is true as long as John is Ken’s father. If we tell
MRS that '

(= MorningStar EveningStar)

then there will be two constant symbols that refer to the same object, but unless otherwise specified,
MRS will assume that different constants refer to different objects, so they are not necessarily =,
Moreover, MRS is equally unable to decide that different constants necessarily refer to different
objects, 80 they are not necessarily not = either.

§2.4 More complex propositions

Central to the utility of predicate calculus is the idea that complex facts can be expressed as combi-
nations of simpler facts, the modes of combination being such that the truth of a complex fact can
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be deter ‘ined from the truth of ita constituents. Thus, for example, the fact *John is taller and
older than Ken” is seen as a conjunction of two simpler facts, and is true if and only if *John is taller
than Ken® and ®Joha is older than Ken® are both true. Notice that the same property does not
hold for sentences such as *John is taller than Ken becauee John is older than Ken®: even if both
parts are known to be true, aay, we still don't know if the whole sentence it t.ae or false because
‘because’ refers to a context of causal relations outside the sentence itself.
Complex facts are expressed in predicate calculus using logical connectives. MRS recognires the
logic2} connectives AND, OR, NOT and IF:
(AND <proposition; > ... <propositiou, >)
is true when all the conjoined propositions are true. A conjunction of no propositions is
true.
(OR <proposition; > ... <proposition, >)
is true when any of ihe disjoined propositions are true. A disjunction of no propositions is
false.
(NOT <proposition>)
means that the proposition is false.
(IF <antecedeat proposition> <consequent propesition>)
is true if the consequent is true when the antecedent is true, or if the antecedent is false;
i.e. the consequent follows from the antecedent.

§2.5 Variables

Many facts that we might want to express are general in the sense that they do not refer to any
particular object or objects in the universe, but have truth conditions depending on the truth of
all the individual propositions generated by applying the statement to each particular object in the
universe. For example, in the {John, Ken} universe, the statement *All Americans play baseball®
can be expressed by

(AND (IF (American John) (PlaysBaseball John))
(IF (American Ken) (PlaysBaseball Ken)))

and it’s truth decided by using the rules for AND and IF. But for larger universes this hecomes a
tedious way to express what seem to be quite simple statements, and for statements like “The sum
of any two integers is an integer® the task of enumerating all propositions of the form

(IF (AND (Integer 1) (Integer 2))
(Integer (+ 1 2)))

is really quite lengthy.
Several other kinds of statement are commonly used which have similar properties:

“There are some Americans who don’t play baseball.”

SAt least half of all Americans forget to vote.”

®There are two hundred million Americans.”
MRS provides a simple mecharism for expressing only universal propositions, which state that some
fact is true of every object in the universe. Of those mentioned, these are by far the most commonly
needed type. All you do is use a special symbol type, called a variable, in the place where the
constant symbol would go if the general statement were applied to a particular object. A variable
is just a symbol beginning with a dollar sign $, e.g. $X $$8 $variable. So the statement *All
Americans play baseball® is expressed as

(IF (American $X) (PlaysBaseball $X))
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*Ever;*hing is going viiong to-'cy® as (literally speaking)
-Soing¥rongT. iry $Y)
Th2 sum of any two integ..i 18 an integer” as

(I? (AND (integer $X) (Integer $Y))
(Integer (+ $X $Y)))

There are two highly important things to note sbout variables.

Firstly, the particuler variable name you use is irrelevant (although it may have mnemonic
valu:). Thus, to MRS, (Going¥rongToday $X) and (Going¥rongToday $everything) are the same
fact.

Secondly, where variables appear in more than one place in a proposition, it matters whether
they sre the same or differens. Thus

(IF (AND (Integer $X) (Intuger $X))
(Integer (+ $X $X)))

means soraething very different from the proposition above that also uses $Y. It says that when youn
add an inii_er to stselfyou get another integer. Thus the key observation is that whenever a variable
occurs more than once in a proposition, each occurrence will refer to the same object.

Unlike many rystems of predicate calculus, computerised or not, MRS allows variables in place
of fn"r4"ons and relations. At first this may seem a little unnecessary — we don’t often want to say
things like ($X Fred), meaning that every unary relation is true of Fred. But in restricted universes
whers we ure dealing with a known set of relations, this might be useful. Also we can use this facility
to describe classes of relations:

(IF (Refloxive $R) ($R $X $X))
says that every object is related to itself by any refiexive relation.
§2.6 Existential propositions

In the previous section we said that MRS had no simple way to handle anything other than universal
propositions. This isn't quite true. Consider the case of ezistential propositions, i.e. propositions
which state that some fact is true of at least one object in the universe. An example is given above:
“There are some Americans who don't play baseball®. This can be interpreted as a statement about
some unknown individual, whose sole properties are that she is American and doesn't play baseball;
we can invent a name for this individual such as LUH9781, and express the existential proposition
by

(AND (American LUH9781) (NOT (PlaysBaseball LUHS781))).

It is essential that the name used for the individual be new in the sense that no other facts in the
database thus far can have mentioned it. Given this condition, you should be able to convince yourself
that nothing essential is lost in the translation. The general name for this process is skolemization,
but the general process for arbitrarily nested universal and existential propositions is too complex
to be given here. Any good textbook on predicate calculus should contain an adequate description.

§2.7 Exercises in representation

In these exercises, the given symbols have the obvious meanings; where you are asked to write your
own propositions, use an equally perspicuous vocabulary.
Express the following propositions in reasonable English:
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1. (Hoxze Dobbin)

2. (Meober Dobbin Horses)

8. (80T (Horse Dcbbin))

4. (0R (Horse Dobbin) (Donkey Dobdin))

8. (I? (Horse Dobbin) (Kammal Dobbin))

6. (I7 (Horse $x) (Mammal $x))

7. (IF (OR (Horse $x) (Cow $x)) (Fourlegged $x))

8. (AND (Mammal $x) (Fourlegged $x))

9. (IF (NOT (Horze Dobbin)) (Dutchman Ermintrude))

10. (IF (NOT (Cow 8z)) (Brown Dobbin))

11. (IF (AND (KHorse $x) (NCT (Nazmal $x))) (Cov $x))

12. (IF (OR (= $x Dobbin) (= $x Tonto)) (Horse $x))

13. (IF (AND (= $x Dcbbin) (= $x Tonto)) (Horse $x))

14. (IF (AND (Nammal $x) (NOT (= $x Dobbin))) (NOT (Horse $x))

15. (IF (AND (Horse $x) (NOT (= $x $y))) (NOT (Horze $y))

16. (NOT (Member $x $x))

17. (IF (AND (Horse $x) (Brown $x)) (Brswn (Tailof $x)))
Express the following English in reasonable propositions:

18. All dogs bark at their neighbours’ dogs.

19. No real numbers are integers.

20. Horses who hate dogs like ice cream.

21. Giraffes have longer necks than Dobbin.

22. An-An is the only male panda in London.

23. Zero is an integer,

24. The fractional part of an integer is sero.

25. The product of two real numbers is a real number.

26. The product of a positive integer and its inverse is unity.

27. Zero is an additive identity. (Don't say (AdditiveIdentity 0)!)

28. The product of two real numbers is never an imaginary number.

30. All numbers are either real or imaginary or both.

31. All Englishmen, Scotsmen and Welshmen are British.
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Chapter 3
Storing and retrieving facts — the database

Once all these facts are represented, we must tell them to MRS, which must store them away
somewhere to be used ia solving problems. Obviously, we should like to be able to inspect and
change the facts at will.

MRS stores facts in its database, also occasionally known as the knowledge base or rule base.
Think of the database as an infinitely extensible repository of knowledge, 80 organised that the time
taken to retrieve a fact from it is essentially independent of the number of facts it contains. But
before we talk about the MRS commands for storing and retrieving facts, we must understand the
concept of a guery.

§3.1 Queries

In MRS, a3 in all logic programming, problem solutions are given by facts. For instance, if I want
to sum the numbers in a list L then the desired solution will be a fact of the form ®*The sum of the
numbers in L is N®, Database retrieval is a simple form of problem-solving, one in which the answer
to the problem is a fact already in the database.

Suppose we have a very simple problem: find the age of John. Our desired solution fact will look
like (Age John x) for some x. What we need to do is ask the system to prove a fact of this form,
given what facts we have already put into its data base. In MRS, as in most logic programming
systems, we can pose this as a query (Age John $x). Note that this isn’t the same as the fact in the
data base, which would mean that everything in the universe was the age of John. It is asking the
system to find any $x such that $x is the age of John. The query is in fact treated as an existential
proposition to be verified. (Note that, as in the case of representing existential propositions in the
database using anonymous constants, we can have universal queries too. For example, if we wanted
to show that everyone was 22, we could use the query (Age G00089 22); if the system can prove
that an object about which it knows nothing is 22, it can prove the same fact about anything.)

Returning to our simple problem, let’s take the case where John’s age is already known: (Age
John 22) is already in the data base (I said this was a simple problem). The system succeeds in
solving the problem by noting that (Age John 22) matches the query, provided we let $x be 22.
Such an association of a variable with a constant symbol is called a binding. In MRS a binding is
represented by a CONSed pair such as ($x . 22). In general, a query could have more than one
variable, e.g. (Parents John $father $mother), so a solution is represented by a binding list such
as (($father . Ian) ($mother . Iris)). In general we say that a query is satisfied by a binding
list if the process of substituting the variable bindings from the list into the query produces a fact
which is true.

Suppose, however, that we know that everyone in our universe is 22, i.e. (Age 8y 22) is
in the data base, but John's age is not specifically mentioned anywhere. Obviously, we would
like the system to produce the solution. If we remember that (Age $y 22), as a data base fact,
is shorthand for (Age Alf 22) (Age Bert 22) . . . (Age John 22) . . . (Age Zack
22), then the answer is obvious: allow bindings for variables in the data base fact as well as in the
query. Thus in this case a binding list (($x . 22) ($y . John)) would, if substituted into either
of the two propositions (Age $y 22) and (Age John $x), produces the same fact (Age John 22).
The substitution into the data base fact produces a fact which is still true; the fact thus produced
matches with the query fact as before, so the solution is guaranteed to be valid.

The process of finding a binding list which, when substituted into two propositions, makes them
the same, is called unification. The binding list is cal'ed a unifier. Thus one method of trying to
solve a problem posed as a query proposition Q is to find a fact P in the data base such that that P

.
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and Q unify, with unifier 0. If we denote the result of substituting a binding list # into a proposition
R as R4, then we require that Po = Qo.

§3.2 Exercises on unification

For each of the following pairs of propositions you are to find the binding list that unifies them
(if any). Aszsume that variables with the same name in different propositions are distinct, so0 you
will have to rename the variables in the eccond proposition if there is any conflict. Some of the
examples contain dot notation — this is the same as the LISP notation for CONS, »o for example

the propositions
(p 8v $x (£ 8y))
and
(pa. $z) _
unify with unifier (($w . a) (82 . (8x (2 ¢7)))).

1. (p $a) and ($r x).

2. (p $a) and ($a q).

3. (p $a c) and (p $y).

4. (q (£ &c)) and (q $2J.

5. (r (g $c)) and (r $c).

6. (r $x (b $x)) and (z $b $b). :

7. (p $a (g $a) (h $a)) and (p (g 8b) {g . $c) ($a . 8c)).
8. (q $2) and ($r . $s).

9. (x $b . $b) and (r $c a).

§3.3 Actually doing things with the MRS database

‘After such a lengthy introduction, even the most diligent reader is probably itching to release
the awesome power of MRS. The monitor-level command you need to invoke MRS is installation-
dependent, so we’ll assumne here that MRS is ready to go.

Commands typed to MRS are actually typed to the LISP interpreter. The normal LISP read-
eval-print loop is still in operation All MRS commands are performed by functions coded in LISP,
90 the ways of entering commands are the same as those for invoking LISP functions: they can be
entered from the terminal or read in from a file using the LOAD function. In addition the NRSLOAD
command can read in MRS propositions directly from a file (see Ch. 10). As with LISP, text
beginning with the comment character *;’ is ignored up to the end of the line, so MRS command
files can be commented just like programs. Ordinary LISP functions can be invoked at all times,
and MRS functions can be invoked from user code.

It is intended that the reader read this chapter sitting at & terminal and type the entries to
the right of the > symbol. Studies have shown that those who aveid this become stunted MRS
users. Moreover, the facts you enter here will also he used in chapter 4, 30 it’s probably best to work
through the two chapters in the same session.

§3.4 Getting facts into and out of the data base

The straightforward and unromantically-named STASH command does the straightforward and
unromantic job of adding a new fact to the data base. Don’t forget to quote the fact you are
stashing. :

>(STASH ' (Parent Alice Bert))
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P102
>{(5TASH *(Parent Alf Bert))
P109

You may find MRS's responses a little pursling, not to say insulting. What it’s actually telling
you is that your propositions have been stored on the property lists of the atoms P108 and P109
(the actual numbers may vary). Thess atoms are called proposition symbola,

>(STASH ' (Female Alice))
P110

>(STASH *(Nale Alf))
Pi1t

>(STASH *(Male Bert))
P112

An alternative to STASH is ASSERT, which initially does exactly the same thing. However, often the
user will want further inferences to be made automatically from he facts she enters, and ASSERT
is used for this, whilst STASH is normally reserved for simple storage of facts.

To retrieve facts from the data base, use the LOOKUP command:

> (LOOKUP *(Male Bert))
(z . 1)

>(LOOKUP ?(Female Alf))
NIL

LOOKUP returns the binding list that satisfies the query. If the query contains no variables, it just
returns a nominai list ((T . T)) to indicat:; «2at the fact was in the data base — this distinguishes
the situation from that pertaining when the fact can’t be found and LOOKUP returns NIL. To find
out the name of Alf’s child, type

>(LOOKUP *’(Pareat Alf $x))
(($x . BERT) (T . T))

As you can see, MRS has no respect for jour careful use of upper and lower case, but don’t abandon
it because it helps to make your source files much more readable. You may find that variables appear
slightly differently in the returned binding lists — this is a LISP effect s0 don’t worry about it.

Clearly, some queries with variables can be satisfied in mors than one way, such as (Parent $p
Bert). LOOKUP returns the first solution it finds, and the data base is searched in the reverce
order from that in which the facts were stashed. This search order is an important, if arbitrary, part
of MRS. It can be used to give a kind of ‘priority’ ranking to facts and rules, and is important in
the understanding of how MRS implements various defaults.

To get all the answers to a query, use LOOKUPS which retmins a list of binding lists:

>(LOOKUPS *(Parent $p Bert))

((($P . ALF) (T . T)) (($P . ALICE) (T . T)))

> (LOOKUPS *(Male $x))

((($X . ALF) (T . 7)) (($X . BERT) (T . T)))

>(LOOKUPS *(Parent $p $c))

((($P . ALF) ($C . BERT) (T . T)) (($P . ALICE) {$C . BERT) (T . 19)))

If by some dreadful mischance you happen to stash a fact that isn’t quite true, you can remove
it using UNSTASH:
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> (UNSTASH "(Fexale Alice))
(FEMALE ALICE)

> (8TASH *(Coddees Alice))
P113

An extremely ugeful command is FACTS, which prints all the facts containing its argument |
(which will usually be an atom, but cza be a term):
>(FACTS 'Alice)
P108: (PARENT ALICZ BERT)
P113: (CODDESS ALICE)

FACTS can also take a second, numeric argument indicating the maximam level at which the first
arguinent may appear in a fact for it to be printed (rather like PRINTLEVEL in LISP). See chapter
12 for ways to specify the output format for facts. You can use FACTS to avoid the tedious chore
of typing out a whole fact, character by character, simply in order to unstash it. Calling FACTS
with an appropriate argument will tell you the proposition symbol for the unwanted fact; then the

) system function Pattern, which takes a propontxon symbol as argument and returns the associated
3 fact, can be uszed thus:

(UNSTASH (Pattern 'P113)).

UNASSERT can also be used to remove facts. Like ASSERT, it is normally used when further
inference is desired, presumably resulting in the removal of dependeat facts.
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Chapter 4
Reasoning with Knowledge

§4.1 Rules of Inference

Having entered all theso facts, what more can be done with them? How does MRS figure out
eolutions to problems? The direct answering by LOOKUP of queries on the database can be seen
as a simple case of problem-sclving, and, as we 82id in the previous chapter, problem solutions are
given by facts. Thus the process of computation in MRS is one of producing new facts from the
original facts encoded about the problem. Gbviously, we can't just produce any old facts: they
should probably follow in some way from the facts already known. The rules which determine what
facts can be added from given facts are called rules of inference.
A rule of inference is usually written like this:

< description of initially known fact(s) >
< facts that can be inferred >

For example, if we know that (AND A B) is true, we can infer that A is true and B is true:

(ANDAB) (AND A B)
A B

If you've gone to a lot of effort to make sure the initial facts encoded about the problem are
true, then usually you'd like all the facts inferred, in particular the solution fact, to be true too. An
important class of inference rules consist of those which guarantee the truth of the inferred facts
provided the initial facts are true. A system using just rules of this type is said to be sound and is
called a deductive system. A system with a set of inference rules which is sufficient to produce all
possible deductions from a given set of facts is called complete. The normal inference processes used
in simple MRS applications are correct but not complete.

§4.2 Solving more difficult problems

In chapter 3 we saw how to solve simple problems involving database retrieval. To solve problems
whose answers we don’t alr~ady know, we have to do some inference, for which we need inference
rules. Where do we get those from, other than from a book? Recall that our logical connectives are
defined in terms of the truth of the propositions they connect — hence the validity of the inference
rules for AND given earlier. Rules for the other connectives can be similarly derived; for example

A (OR A B), (NOT A) (OR A B), (NOT B)
(OR A B) B A
The following is the basic inference rule, called Modus Ponens, used in most MRS work:
(IFAB), A
B

which basically says that if you know that B follows from A, and you know A, then you can deduce
B. For example, if we know {IF (CurreantYear 1985) (Age John 22)) and (CurrentYear 1985)
then we can conclude (Age John 22) and solve our problem. The reasons for using this inference
rule are

1) Most of our knowledge is naturally expressed using IF.

2) Even if it’s not, it can usually be rewritten that way.
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The truth of theze two statements will become apparent.

Let us retura to a previous example, the use of (Age $y 22). The diligent reader will no doubt
have spotted that this is really a dumb thing to have in the data base. For instance, it implies such
things as (Age 22 22). What we should have s2id was something like (IF (Person $y) (Age $y
22)). Then, given (Peraon John), we can infer (Ags John 22).

Or can we? As it stands, no. The above rule of inference requires that the exact antecedent A
be in the data bare. A moment’s thought, which you should think, yields tha extended rule

(IF A B), A
Be

i.e. if a known fact A' unifies with the antecedent A of an IP-proposition, then we can infer the
consequent B modified by substitutions from the unifier . This may seem highly technical, but
really it’s just a formalisation of your commonsense intrition of how such IP-propositions should be
used.

Typically, an IF-proposition, henceforth known as a rule (not to be confused with an inference
rule), has a more complex antecedent than an atomic proposition (i.e., a proposition with no con-
nectives), although the conclusion will usually be atomic. To avoid having to have a whole, complex
fact stored in the database to unify with the antecedent, which wouldn’t be usable except for one
particular rule, we must add some inference rules for combining atomic propositions into complex

facts:
s Ay, .eny An
(AND A‘---An)

A
(OR Ay...A,)

Given these inference rules and database such os

(IF (AND (Happy $x) (KnowsHappy $x) (HasHands $x $y))
(ShouldClap $x $y))

(Happy John)

(KnowsHappy John)

(HasHands Jobn JohnsHands)

where Ac = A'e

fors=1...n.

we can deduce

(ShouldClap John JchnsHands).

§4.3 Solving really very difficult problems indeed

To get all this to hang together, we need a method for performing multiple inferences and stringing
them together so that we get from the facts at hand to a solution to the user’s query.

Let’s start with the facts at hand. Clearly, one way of getting the solution is to find a rule whose
antecedent is satisfied, apply the rule of inference and deduce the consequence. We could then add
the consequence to the data base and start again, until we deduce a fact that unifies with the query.
This is called forward cAsining, for obvious reasons. The obvious drawback with the scheme is that
the system could end up making dozens of inferences that bear no relation to the task of proving
the query.

The other simple alternative is to start with the query and ask “How.can we prove this?® The
answer: prove the antecedent of a rule whose consequence unifies with the query. That is, if we have
to prove B, and there is a rule in the data base (IF (AND A;...A,) B') such that B'c = Bo, then
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the task reduces to proving Ao for all 5. The regression ceases when we find an antecedent that's
already in the data base. In this case, we only examine inferences that potentially contribute to the
actual goal. This is called backward chaining. The obvious drawback is that the syztem might go
off trying to prove antecedents that are unprovable, or even false. The mazjority of expert systems
built thus far are basically backward chaining, with some refinements. The ®expert knowledge®
is encoded as a collection of rules for drawing conclusions under certain circumstances; often, the
system has the option of asking the user to confirm an antecedent if it’s not in the data base and
can’t be proven.
The two methods are illustrated in the following sections.

§4.4 Using inference to get results

Before we can do any inference, we'd better have some rules. The following rules define some family
relationships (we'll omit MRS’s responscs to STASH commands from now on):

>(STASH ' (IF (AND (Parent $p $c) (Female $p)) (Nother $p $c)))
>(STASH *(IF (AND (Parent $p $c) (Nale $p)) (Pather $p $c)))
>(STASH ' (IF (Parent $p $c) (Child $c $p)))

>(STASH *(IF (AND (Child $c $p) (Female $c)) (Daughter $c $p)))
>(STASH *(IF (AND (Child $c $p) (Child $p $g)) (Crandchild $c $g)))

Let’s also extend our family by giving Bert some kids:

>(STASH ’(Parent Bert Cathy)
>(STASH '(Fezale Cathy))
>(STASR ’(Parent Bert Chuck)
>(STASH *(Nale Chuck))

The normal way to solve problems in MRS is to use backward-chaining, the reason being that
most data bases are more amenable to this approach; we will see later that the MRS user in fact
has a good deal of control over the actual strategy to be adopted. First let’s ind out who is Bert’s
daughter; to do this we use TRUEP, which is like LOOKUP except that it uses backward inference
a3 well as data base retrieval to find the answer:

> (LOOKUP *(Daughter $d Bert))
NIL

>(TRUEP *(Daughter $d Bert))
(($0 . cCATHY) (T . T))

It is important to understand how TRUEP arrived at its answer. The first step in any attempt
to prove a goal is to see if it is already known to be true. Thus TRUEP calls LOOKUPS, which
fails. Then TRUEP looks in the data base to find those rules whose consequents unify with the goal.
Here there is only one rule

(IF (AND (Child $c $p) (Female $c)) (Daughter $c $p)).
After applying the unifier to the antecedent, we have the goal
(AND (Child $c Bert) (Female $c)).

To prove a conjuctive goal like this we need to prove all the conjuncts: TRUEP attempts the subgoals
from left to right, but this is an arbitrary choice and one which you can alter when you know how.
To prove (Child $c Bert), since LOOKUPS fails, we must use the rule

0)‘4
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(IF (Parent $p $c) (Cuile $c $p))
so we must then prove
(Parent Bert $c).
LOOKUPS succeeds here, returning to TRUEP » binding list
(((%p . Chuck) (T . T)) ((¢p . Cathy) (T . T)).

There are no rules for concluding parenthood, so that's all the solations there are. Having got these
two answers to (Child $¢ Bert), we must try to prove (Femzale $c) with each in turn:

(Female Chuck)

fails because it’s not in the data base and there are no rules for concluding such a propesition (at
least not in the data base).

(Female Cathy)
succeeds in LOOKUPS, so0
(AND (Child $c Bert) (Female $¢))
succeeds with $¢ bound to Cathy and the binding list
(($D . CATHY) (T . T))

is returned after the appropriate substitutions.

Note that if LOOKUP rather than LOOKUPS had been used, TRUEP would not have found
the answer since only (Parent Bert Chuck) would have been found. Thus even though TRUEP
only needs to return one solution, all alternatives retrieved must be considered. Similarly, in proving
a goal, we must not ignore any possible solutions. To do this, believe it or not, TRUEP actually
calls TRUEPS.

Perform a similar analysis of the proof procedure for the following:

> (TRUEPS *(Crandchild $c Alice))
(C(SC . CHUCK) ($1 . BERT) (T. T))
(($C . CATHY) ($2 . BEFD) (T . T)))
> (TRUEPS *($r Alf Bert))
C(($R . PARENT) (T . T)) (($R . PATHER) (T . T)))

Looking at the returned list of Alice’s grandchildren, you may be wondering what $1 is doing *here.
The reason is that sometimes the bindings of intermediate variables, i.e. variables that aren’t in the
query and are unbound when their rules are invoked, are useful in understanding how an answer
is arrived at. Here, $1 is the system-created variable that replaces $p (for the purposes of variable
standardisation) in the rule defining the Grandchild relation. Thus it-informs us that Bert is the
parent of Alice’s grandchildren and it was this relationship that allowed the system to complete
the inference. The rest of the guide will omit these bindings for the sake of clarity; sometimes the
intermediate variables are so numerous that binding lists become almest ‘illegible’. To overcome
this you can process them using getvar and related functions described in chapter 10.

§4.5 Using forward chaining

Forward chaining in MRS is not quite as simple as backward chaining. If the processes were entirely
analogous, we would give the system a query then have it reason forward from all the facts in the
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databaze until the solution was produced or until no more inferences could be made. However, this
would be somewhat inefficient since most of the inferences would probably be irrelevant. In fact,
one full run of such a forward chainer would produce all posaible solutions for all possible queries,
and can casily take forever.

The method we adopt is to assume that a certain small set of facts constitates a description
of the problem situation. These facts, together with the background krowledge in the database,
should contain the seeds of the solution to the query the uses has in mind. Thus, when the user
adds the problem description to the database, tha system forward-chains Jfrom these facts unti) no
more inferences can be made. Then the user need only do a LOOKUP for her query and voild, the
answer is there,

As you may have guessed, the user must add the facts using ASSERT.-But first, to notify MRS
that we would like to forward-chain from assertions, enter

>(STASH *(toassert &p fc)).

Don't worry yet about how this works. Let us now redo the example of the previous section.
Assuming the rules defining family relations are already in the database, we will assert each fact
describing our particular family in turn, and observe the actions of the forward chainer. To do this,
we can use the tracing mechanism of MRS to see each step of the inference process as it happens,
by entering

> (TRACETASK ‘&x).

Work through the following transeript and make sure you see how each conclusion is reached. Each
FCDISP step shows a fact being asserted. After it is in the database, the system tries to find all those
rules whick have a premise, or a conjunct i their premise, that unifies with the fact. For each such
rule, it then performs a LOOKUP on each of tae other premise conjuncts (if any), and if successful
calls FCDISP on the conclusion of the rule.

>(ASSERT ’(Parent Alice Bert))

Executing FCDISP on  (PARENT ALICE BERT)
Executing FCDISP on  (CHILD BERT ALICE)
DONE

> (ASSERT '(Parent Alf Bert))

Executing FCDISP on  (PARENT ALF BERT)
Executing FCDISP on  (CHILD BERT ALF)
DONE

> (ASSERT ?(Female Alice))

Executing FCDISP on  (FEMALE ALICE)
Executing FCDISP on  (NOTHER ALICE BERT)
DONE

> (ASSERT ' (Nale Alf))

Executing FCDISP on  (MALE ALF)
Executing FCDISP on  (FATHER ALF BERT)
DONE

> (ASSERT ’(Male Bert))

Executing FCDISP on  (MALE 5ERT)

DONE

> (ASSERT *(Parent Bert Cathy))

Executing FCDISP on  (PARENT BERT CATHY)
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Executing FCDISP on  (CHILD CATHY BERT)
Executing FCDISP on  (GRANDCHILD CATHY ALICE)
Executing FCDISP on  (GRANDCHILD CATHY ALF)
Executing FCDISP on  (PATHER BERT CATHY)
DONE
> (ASSERT *(Female Cathy))
Executing FCDISP on  (FEMALE CATHY)
Executing FCDISP on  (DAUGHTER CATHY BERT)
DONE
> (ASSFRT ’(Pareat Bert Chuck))
Executing FCDISP on  (PARENT BERT CHUCK)
Executing FCDISP on  (CHILD CHUCK BERT)
Executing FCDISP on  (GRANDCHILD CHUCK ALICE)
‘Executing FCDISP on  (GRANDCHILD CHUCK ALF)
Executing FCDISP on  (FATHER BERT CHUCK)
DONE
> (ASSERT *(Male Chuck))
Executing FCDISP on  (MALE CHUCK)
DONE
> (UNTRACETASK)
(&X)
After this process, the query (Daughter $d Bert) already has its solution in the database, s0 a
LOOKUP is sufficient to find it.

There are some restrictions on the forward-chaining routine as currently implemented. These
mean that the only rules triggered when a fact A is entered will be those of the form (IF A B) or
(IF (AND .. A ..) B). Thus instances of the proposition emtedded in disjunctions or any other
constructions will not be noticed. '

§4.6 Solving problems with numbers

MRS knows about certain relations and can ascertain the truth of propositions using them without
recourse to the data base. Arithmetic relations are of this type:

> (LOOKUP *(> 4 2))
«r. 1)

MRS knows about > < >= <= & + = //, The latter four are not n-place functions (as in LISP) but
(n + 1)-place relations; for example,

(+ $x $y $2)

means that $z is the sum of $x and $y.
Thus we can define all kinds of arithmetic relations (not functions) using these as primitives:
>(STASH *(IF (AND (+ $x $y $sum) (// $sum 2 $avg))
(Average $x $y $avg))
> (TRUEP *(Average 7 11 $x))
($x. 9 (r. ™

Note that MRS can only deal with these relations when the arguments are properly bound:

>(LOOKUP *(> $x 4))
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NIL
>(LOOKUP *(+ 1 $x 3))
NIL

A useful way to view arithmetic and other ‘built-in’ relations is as virtual facts. Apart from
the restrictions just noted, we can pretend that the database contains an infinite supply of facts
about these relations (their extensions, as defined in chapter 1). Thus there are virtual facts like (>
2 1), (+ 5 14 19) and (// 45 7 6) ‘available’ to LOOKUP. The concept of a virtual fact can be
applied to any built-in relation, and several more such relations are given in chapter 8.

You can also use rules with TRUEP to define recursive relations. Although this is a hoary
example, it serves to illustrate the technique:

>(STASH ' (Factorial 0 1))
>(STASH *(IF (AND (> $x 0)
(- $x 1 $x-1)
(Pactorial $x-1 $factx-1)
(» $factx-1 $x $factx))
(Factorial $x $factx))
>(TRUEP ’(Factorial 6 $n))
((sn . 720) (T . 1))

Using the built-in relations can be quite tedious for computing a complex formula since each
operator in the formula requires a new conjunct and intermediate variable to hold the result. MRS
uses a special relation IS which allows an entire computation to be done in one step with a functional
representation taken di sctly from LISP: )

>(STASH *(IF (IS (- (* $b $b) (* 4 $a $c)) $d)
(Discriminant $a $b $c $4)))

>(TRUEP ’(Discriminant 2 4 1 $d))

(0.8 (T. 1))

§4.7 Solving problems with lists

A list is an object in the universe just like any other. However, unlike numbers, lists have no ready-
made constant symbols which MRS recognises. The one exception is the empty list NIL. Other lists
are represented by complex terms. Contrary to the normal syntax for terms, MRS has a special
syntax for lists: a list with CAR $x and CDR 8y is written ($x . $y). The function symbol *.’
appears in the infix position to enhance readability. Other than this, lists are treated the same way
as any other terms — it is important to remember that *.’ is not a LISP function which is executed,
but an uninterpreted symhol.
Let us define the AP¥ END relation for lists:

{APPEND NIL $1 $1)
(IF (APPEND $11 $12 $1)
(APPEND ($x . $11) $12 ($x . $1)))

The recursion works because the empty list NIL can't be unified with the complex term ($x . $1),
80 TRUEP continues to try the IF-rule until $11 becomes NIL. This may seem a little strange at
first, especially if you are used to the CAR and CDR recursion of LISP. Try doing

(TRUEP *(APPEND (1 . (2 . (3 . NIL))) (4 . NIL) $1))
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for yourself on paper to see what happens. Then just to make sure, and to get another insight into
why writing facts is better than writing programs, do

(TRUEP *(APPEND (1 . NIL) $12 (1 . (2 . (3 . NIL)))))

as well.

The use of lists in MRS is far less common than in LISP. The reason for this is that facts
usually concern relations between objects rather thaa between enumerated collections of objects.
However, sometimes you will want to know properties of such collections which can only be obtained
by examining their contents; for example, the question “How many grandchildren does Alice have?”
is asking for the cardinality of the set of Alice’s grandchildren. MRS provides a built-in relation
BAGOF for just this purpose.

(BAGOF $x P $s),

where P is any proposition involving $x, means that $s is the bag (or multiset) containing all $x’s
satisfying P. The bag itself, to which $a is bound, is just a list term, as in LISP. Since bags (and
sets) are representéd by ordinary lists they do not have some of the properties of sets one might
expect — for example, two sets with the same elements are not necessarily eqnal since the elements
might appear in different orders.

One of the things about bags is that elements can occur more than once. In some cases these
occurrences will be ‘spurious’ in that we really want the set returned, i.e. the distinct solutions for
$x of P. This might in fact occur in the case of finding the number of ‘Alice’s grandchildren, since
there could be muitiple ways of showing that someone was related to Alice in this way. For these
situations MRS provides a predicate SETOF, which works just like BAGOF except that it removes
multiple elements before returning the list. As a result, it is much less efficient than BAGOF and
should only be used when necessary. ’

Before you can use BAGOF or any of the built-in predicates for handling sets yon must load
the file SET from the MRS directory. Do it now.

OK, now that MRS is apprised of sets, let’s try it out:

4

> (LOOKUP *(BAGOF $x (Nale $x) $f))

(($F ALF BERT CHUCK) (T . 1))

>(TRUEP *(BAGOF $x (Crandchild $x Alf) $g))
(($G CHUCK CATHY) (T . T))

Notice that the binding lists for $2 and $g look a little odd. If you really believed the story about
what MRS lists are, you would expect ($G . (CHUCK . (CATHY . NIL))).But in fact MRS cheats
a little and uses the same internal representation as LISP does for lists, with the result that the
LISP output routines print out the binding as a normal list structure.

To find out the number of Alice’s grandchildren, we just need to find the length of the list
representing the bag of them. Thus we need a LENGTH relation; MRS has one built-in, and this is
how it’s defined:

(LENGTH NIL 0)
(IF (AND (LENGTH $1 $n)
(+ $n 1 $oplusi))
(LENGTH ($x . $1) $oplusil))

but the well-known NoOfGrandChildren relation was somehow omitted by MRS’s originators so
you’ll have to put it in.
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>(STASH '(IF (AND (BAGOF $x (CrandChild $x $y) $g)
(LENGTH $3 $n))
(NoOfGrandchildren $y $n)))
> (TRUEP *(NoOfGrandchildren Alf $n))
(v . 2)(T. 1)

There are several other built-in relations for handling Lists and sets which are described in
chapter 8. Using these relations is much more efficient than writing your own, since they use
compiled LISP code rather than interpreted MRS facts.

§4.8 Using more complex rules

So far all the rules we have encountered have had a premise consisting of either an atomic proposition
or a conjunction of atomic propositions. What of the remaining connectives, OR and NOT? In back-
ward chaining, when a goal (NOT <p>) is encountered, the only way of proving it is to find (NOT
<p>) in the database or to find a rule that concludes it — in other words negation is not reducible
in the same way as conjunction. On the other hand, disjunction is reducible, since a disjunction of
propositions is true if any of the ;\S-opoaitiom is true. So all we have to do to prove a disjunction is
to try proving each disjunct in turn until we find one that is true. As with conjunctions, this is done
in left-to-right order. If we have to find all solutions we try all disjuncts. A simple example is the
(AbsSign $n $s) predicate, which returns $8=0 for $a~0 and 1 ctherwise. One’s first, LISP-based
instinct is to say

(IF (OR (AND (= $n 0) (= $s 0))
. (= $s 1))
(AbsSign $n $s))

which unfortunately doesn’t do the right thing at all. The error shows up when we call TRUEPS
on AbsSign, which happens‘when we try to prove the predicate as part of some proof in which
AbsSign is embedded. Suppose that, when we get as far as AbaSign, $n is indeed bound to 0, s0
that AbsSign succeeds wjth $s bound to 0, but then a later part of the proof fails, MRS will try
to find the alternative solutions to earlier parts of the proof to see if, with those soiutions, the later
part will succeed. Thus it will try the other disjunct (= $s 1) and succeed with that, and carry on
the rest of the proof with an incorrect binding for $s. Clearly, the answer ig to replace that disjunct
with (AND (NOT (= $a 0)) (= $s 1)). But recall that (NOT <p>) can only be proved if a fact
tells us that <p> is not the case. It's hardly likely that the database contains facts like (NOT (= 1
0)), (NOT (= 2 0)) and s0 on. So we are in a quandary. But MRS can help out with a whole new
class of connectives called modal operators. Whilst a whole body of literature has been written on
the semantics of these operators, we will concentrate just on what they mean in terms of the proof
process. The operators that MRS provides are KNOWN, UNKNOWN, PROVABLE and UNPROVABLE. Each
operates on a single proposition, just like NOT, and means roughly what it says:

(KNOWN <p>) succeeds if <p> can be satisfied by a simple LOOKUP.
(UNKNOWN <p>) succeeds if <p> cannot be satisfied bjha simple LOOKUP.

(PROVABLE <p>) succeads if <p> can be proved from the facts in the database, 5o it’s a
null operator.

(UNPROVABLE <p>) succeeds if <p> cannot be proved from the facts in the database.
In this case, since = is handled using LOOKUP, we should say
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(IF (GR (AND (= $n 0) (= $a 0))
(AND (UNKNOYN (= $a 0)) (= $s 1))
(AbsSign $n $3))

UNKNOYN and UNPROVABLR are extrememly uveeful in all kinds of situations. In any instance where
something that isn't known to be trus can be azsumed to be false, we can use these operators and
avoid the chore of having to explicitly stash the negated propositions which the use of NOT would
require. This assumption is called the closed-world assumption, and is used all the time by us
humans. For instance, if I can’t see a wallin .. =t of me as I walk down a corridor I tend to 283ume
there isn’t one there. In a logic programming environment, we have to make these assumptions a
little more explicit, as you will see when doing the exercises in the next chapter.
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Chapter 5
Some (alinost) real examples

There are (at least) two distinct styles of using MRS corresponding to the situations in which
the user finds herself: she may already know how to solve the problem, i.e. have the course of
the necessary computation already mapped out; or she may not. The ‘code’ produced in the two
c23¢3 is not necessarily dissimilar, in fact one could imagine cases where the same programs were
produced by two programmers even though their approaches were totally different. This distinction
is reminiscent of that between Al and non-Al programs.

In the first case, where the user knows what computation is needed, facts entered as rules of
the form

(IF (AND 4,...4,) B)

are understood procedurally to mean *To prove B, prove A; through A, in that order”, assuming
backward-chaining is being used. The user thus breaks down her goals into subgoals, often using the
results of subgoal A; in subgoal A;41, until trivial subgoals are reached. This results in programs
that look very much like their LISP equivalents (cf. the definitions of APPEND and Factorial);
the MRS user has the additional advantages of the implicit computation in unification and the
non-determinism achieved using free variables.

In the second case, where the desired computation is not known, MRS (or at least logic pro-
gramming) really comes into its own. In the following example we will produce a system that can
predict the outputs of an electronic device, consisting of wires and gates, given its inputs. The stages
in the genera! method are as follows:

1) Decide on an ontology for the domain — the contents of the universe and their categories.

2) Decide on a vocabulary of relations for describing both the problem instances and the general
knowledge used ia solving problems.

8) Collect and encode all the general knowledge.

4) Encode the description of the particular instance.

5) Invoke the appropriate MRS inference procedure to produce the solution.

Of course, the first three stages are somewhat interdependent: the ontology may depend on
the knowledge available; a new problem instance may turn up objects not yet accounted for, and
so on. For example, if I have no idea how temperature affects electronic devices I won’t want to
include temperature in my ontology or relations. Similarly, one often finds the need to rethink one’s
ontology when one finds that the knowledge is difficult to express in terms of the current set of
objects. Thus for some purposes the best order may be somewhat different from that given above.

Rather than just dump the solution on you, let’s try to follow the stages leading to it in detail
and motivate the decisions leading to the final program.

§5.1 Deciding on an ontology

This is not the same as having a clear definition of the problem. A clear definition of this problem
class is that it consists of arbitrary circuits constructed from wires and two-input AND, OR and
XOR gates and single-input NOT gates. The terminals of the circuit will be designated as input or
output terminals. The full-adder circuit in Fig. 1 is the particular example that we will consider.
The first two inputs are the two bits to be added, the third is the carry bit from the previous addition.
The first output is the sum bit, the second the carry bit to be included in the next addition.
Presumably we will want to include the gates themselves in our universe since we have to
describe their behavior. Similarly the full adder itself has terminals and a behavior (which we are
trying to deduce) so we’ll include it in the universe and call it F. Since we won’t want to describe
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Figure 1. A full adder circuit.

the behavior of each individual gate when we need only describe each type, we'll want the gate types
ANDGate, ORGate, XORGate. What else? Wires? Junctions? Terminals? Well, the terminals
need to be there because we need to know the i/o signals at them. But the behavior of a circuit in
this idealisaiicn is determined by the components and their interconnections regardless of the path
or type of those interconnections, so the junctions and wires themselves are irrelevant. Only the fact
of the iuterconnection need be recorded. Which leads naturally to the next stage.

§5.2 Deciding on a vocabulary

First, the description of the individual gates:
(Type <gate> <gate-type>) e.g. (Type A1l ANDGate)

Now, the behavior of the devices will be specified in terms of signals on their terminals
(Signal <terminal> <value>)

where <value> will be on or o££. We could equally well say
(On <terminal>) and (0ff <terminal>)

but reifying the signal will probably allow greater flexibility if needed. For instance, we'll need to
say somewhere that the signals at both ends of a wire should be the same; then we can say

(IF (AND (Connected $ti $t2) (Signal $ti $s))
(Signal $t2 $s))

but with ON and OFF predicates we would have to say

(IF (AND (Connected $ti $t2) (Cn $t1))
(0n $t2))

(IF (AND (Connected $t1 $t2) (0£2 $t1))
(0f£f $t2))

Note that
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(IF (AND (Connected $ti $t2) ($s $t1))
($s $t2))

is no good because it would imply that the terminals were the same color too.

At first sight one might think that the terminals can be named just like the gates: AlInputt,
AtlInput2 etc. But the rules for gate behavior need to Le ,mitten for a general gate not just a
particular individual, so we need a function symbol which will refer to the general gate's terminala:
(Inputi A1) perhaps; if we follow the reification principle then (Input 1 A1) is probably better.
So to state that the second input of gate X1 was on, we would say

(Signal (Ioput 2 X1) eon).
The interconnections can now be specified easily; for example

(Connected (Output 1 X1) (Input 1 X2)).

§5.3 Collect and encode all the general knowledge

The problem here is to predict the behavior of a device; to solve it we need to know how the signals
are propagated. The signals are propagated through wires and gates. The 'wires’ are easy to deal
with, as shown above:

(IF (AND (Connected $t1 $t2) (Signal $:1 $s))
(Signal $t2 $s))

Of course, if we were dealing with time-dependent signals and finite-length wires, or wires with
impedance, then the sysiem would need a lot more information.

The propagation of signals through a gate depeads on the gate type. The following facts describe
the operation of the three types of gate used.

(IF (AND (Type $g ANDGate)
(Signal (Input 1 $g) on)
(Signal (Input 2 $g) on))
(Signal (Output 1 $g) on))
(IF (AND (Type $g ANDGate)
(Sigral (Input $a $g) off))
(Signal (Output 1 $g) off))

(IF (AND (Type $g ORGate)
(Signal (Input 1 $g) off)
(Signal (Input 2 $g) off))
(Signal (Output 1 $g) off))
(IF (AND (Type $g ORGate)
(Signal (Input $n $g) on))
(Signal (Output 1 $g) on))

(IF (AND (Type $g XORGate)
(Signal (Input 1 $g) $it)
(8ignal (Input 2 $g) $i1))
(Signal (Output 1 $g) off))
(IF (AND (Type $g XORCate)
(Signal (Input 1 $g) $i1)

e g e et




28 The Compleat Guide to MRS

(Signal (Input 2 $g) $12)
(UNKNOVN (= $11 $12)))
(Signel (Output 1 $3) on))

§5.4 Encode the description of the particular instance

In this cass the problem instance is two-fold: first the circuit, then the particular inputs. The cirenit
is described by listing the types of the gates and their interconnections.

(Type X1 XORCate)

(Type X2 XORGats)

(Typo Al ANDCata)

(Type A1 ANDCate)

(Type 01 ORGCats)

(Connected (Input 1 F) (Input 1 X1))
(Connected (Input 1 F) (Input i Al))
(Connected (Input 2 F) (Ioput 2 X1))
(Connected (Isput 2 F) (Input 2 A2))
(Connected (Input 3 F) (Input 2 X2))
(Connected (Input 3 F) (Input 1 A2))
(Connected (Output 1 Xi) (Input 1 X2))
(Connected (Cutput 1 X1) (Input 2 A2))
(Connccted (Output 1 A2) (Input 1 01))
(Connected (Output 1 A1) (Input 2 01))
(Connected (Output 1 X2) (Output 1 F))
(Connected (Cutput 1 01) (Cutput 2 F))

whilst the inputs ars specified by giving the signal value at each of the input terminals of the adder:

(Signal (Input 1 F) on)
(81gnal (Input 2 F) off)
(sigral (Input 3 F) on)

§5.5 Invoke the appropriate MRS inference procedure

To check that the circuit does what we want, we need to check both outputs. A TRUEP for each
would suffice, but we can use the power of indeterminacy to get MRS to go through all the outputs

itself.

>(TRUEPS '(Signal (Output $a F) $s))
(C($N . 1) ($8 . OFF) (T . T))
C(sN . 2) (88 . 0N) (T . 1))

which is the correct answer.

You may say “That’s all very well for those inputs, but what about all the other combinations?®
It would certainly take a lot of boring typing to stash and then unstash all eight combinations of the
three inputs. But we can get MRS to enumerate them, given a bit of thought. To find the possible
inputs, it needs to know the possible values for the signal on a terminal. At the moment, they could

be on, off, green or angry for all it knows. So

(SignalValue on)
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(SignalValue off)

tell it what it needs to know. Then if we define a predicate which is satisfied by any combination
of inputs with their respective outputs and call TRUEPS on it, MRS will go through all possible
inputs for us.

(IF (AND (SignalValue $1i1) (Sigpal (Imput 1 F) $11)
(SignalValue $12) (2ignal (Input 2 F) $i2)
(SignalValue $i3) (Signal (Input 3 F) $i3)
(Sigoal (Cutput $n F) $a))
(InputTested $n $1i1 $i2 $1i3 $s))
>(YRUEPS *(InputTested $n $i1 $i2 313 $3))
(C($N . 1) ($11 . OFF) ($12 . OFF) ($I3 . OFF) ($S . OFF) (T . T)) etc.

The kind of reasoning by which the above answers are produced is extremely important and
forms the basis of all scientific thought from the time of Newton up to the advent of quantum
mechanics. Basically it relies on the notion that, given a description of the initial situation and
some correct laws on how ona situation follows from a preceding one, the situation at any future
time can be predicted. The knowledge base and case description are said to form a causal model of
the system; such models are increasingly being employed in expert systems that deal with physical
situations.

You may have a nagging intuition that it’s an odd thing to do to work back from the outputs
when the ‘flow of causality’ starts from the inputs. This intuition is well-grounded — a forward
chaining approach would be more efficient since all the inferences would be necessary and determined,
whilst the backward chainer may be trying to prove output values that are inconsistent with the
inputs before it makes the correct choice. A highly instructive exercise is to try it both ways with
tracing turned on.
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§5.6 Exercises

The trouble with exercizes ia that people are just too fat and lasy to do them. You won’t lose weight
by doing these, in fact yoa could go jogging instead, but they will test and extend your ability and
understanding, I hope.

1. Writs some rules to play a move in tictactoe. The board representation will be

(Cn <player> <square>)

where the player is O or X and the squares are numbered 1...9 left to right, top to bottom. To
produce a move the user should be able to type simply

>(TRUEP ’(BestNove X $movs))
((/$MOVE . B) (T . 1))

Use only rudimentary strategy: take a win if available; stop an opponent’s win if necessary; move
at random otherwise.

2. If you thought that was a little too easy, now do the same for a chess move, Include as many
details of castling, pawn promotion, en passant moves and checking as possible. To make things a
little easier, you don’t need to pick the best move; just do enough so that

(TRUEPS ’(LegalMove White $move))

would return all of White’s legal mcves. You will have to decide how to represent the board and the
moves; also some history of the game will have to be present to decide on castling and en passant
legality.

Notice that by writing rules that decide if an individual move is legal you have defined the space
of all legal moves and your rules can be used as a generafor as well as a tester.

3. Create a knowledge base and problem description sufficient to solve the geometrical problem
presented in Fig. 2.

Figure 2. Given <OAB = 20° find <ECD

Try to follow the stages outlined earlier in the chapter for the circuit example. A hint to save
you some head-scratching: the easiest way to say that AB is a tangent to the circle is to say that
AB is a tangent to the circle.
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Chapter 6
Controlling deduction

So far our description of MRS ha2s concentrated on the solving of problems at the domain
level using mainly backward-chaining inference. In this capacity, MRS is little diferent from other
systems suck as PROLOG. The real distinction lies in MRS's ability to allow the user to express all
the knowledge she has about the best way to go about finding the solution, efficient wavs of doing
particular computations or the overall structura of the computations she would like to see performed
(the architecture). Essentially, at each stage of its operation MRS uses a theorem-prover to find out
how to proceed; by making facts available to this theorem-prover the user can tell MRS what to do
and kow and when to do it.

§6.1 Tasks

From the point of view of the actions that are being performed, computation in MRS consists of
the creation and execution of tasks. Tasks are calls to LISP subroutines with their arguments; they
range from calls to proof routines such as TRUEP through single proof steps to output routine calls.
Executing one task can cause other tasks to be created. Given a method for making tasks available
for execution, a method for finding out how to perform the tasks and a method for deciding which
of several tasks to execute, we have a general architecture for computation capable of producing any
desired behavior.

§6.2 Controlling what gets done when: the scheduler

The question of what gets done requires a discussion of the mechanics of the top level of MRS —
the scheduler routine,
6.2.1 The general (non-default) mode of scheduler operation

The scheduler is invoked by all the built-in inference routines. In its most general mode of
operation it follows the deliberation-action model of intelligent systems shown in Figure 4. To get
the scheduler to operate in this mode the switches executable ard executed must be set to T.

J
Decide Whatto Do !
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A Decide How to Do It
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Pigure 4 The deliberation-action model
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The deliberation part is achieved by having the meta-level theorem-prover find a task satisfying
(executable ktzek). There are of course meta-level rules to decide what tasks are executable:

(IF (AND (applicadle &task)
(UNPROVASLE (disquslified ktask)))
(executable &task))

A tazk is disqualified if ancther applicable task is preferred to it:

(IF (AND (applicable &anytask)
(preferrsd kanytask &ktask))
(disqualified 2task))

To find the applicable tasks, we first find the runnable tasks; there are no built-in rules for deducing
runnability so this is where the user can decide what gets done. All runnable tasks with opesators
which are LISP subroutines are automatically applicable.

Another switch preferred determines whether tasks can be disqualified — if it is NIL the above
rule for proving disqualified will not be used, whereas if it is non-NIL the rule will be in e7::t.

A simple example of how we can plug into the deliberation process to affect what gets done
is the implementation of demons. A demon is a task that is to be execated whenever a given set
-3 of conditions becomes true. We can signal that a task should be executed (or at least scheduled
for execution) by asserting that it is runnable. This can be done automatically if we use forward
chaining from assertions and express the demon as a rule of the form

(IF <triggering condition>
(runnable <task to be executed>)).

Using this mechanism, the range of system architectures that can be implemented is enlarged to
include blackboard systems, something one wouldn’t expect from a PROLOG look-alike. Essentially,
these demons form a condstion-action architecture, which can be used to implement any desired
structure of computation.

6.2.2 Default mode —— the agenda

The above set of rules is only used in full when the switches executable and executed are
non-null. The normal mode of operation ia based on an agenda. The variable agenda stores a list
of tasks, all of which are automatically applicable. If the switch preferred is NIL, the default,
the executable task is the first one on the agenda. Thus in the default mode the agenda is empty
until a top-level command is entered by the user. The LISP function (txuep or whatever) that is
invoked places itself and its arguments on the agenda and calls scheduler, thus connecting with the
scheme described above. All the built-in inference routines use the agenda; the normal base-level
backward-chainer bc puts bedisp tasks on the agenda; fc puts fcdisp tasks on the agenda, and so
on.

When the preferzed flag is non-null, the tasks on the agenda are compared to find the most
preferable one, thus disqualifying all the others, at least in theory. In practice, for efficiency reasons,
the executable-related rules are skipped, and the preferred task is executed immediately.

§6.3 Telling MRS how to do things

This section introduces the ideas involved in specifying how MRS is to execute the tasks it encounters.
The range of tasks which can be handled is given in the section on task-related attachment in chapter
8; here we present some motivation and a detailed example of the kind of information the user can
give the system for deciding how to perform tasks. '

% N
!
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We have already seen some strange mnmbling necessary for doing forward chaining. The exact
incantation was

(STASH *(toassert dp fc)).

Its effect was that all subsequent assertions caused forward-chaining to tals place. Instead of using
the normal LISP subroutine for assertions (which is the same as :Zat for STASH initially), MRS
will call fc with the asserted proposition as argument. Wxinever a task such as an ASSERT or
TRUEP is scheduled to be executed, MRS looks up thz =ppropriate subroutine to use under toassert
or totruep. Thus by stashing facts like (tczzsert &x fc) we can affect the way in which MRS
performs the commands we give it. Suci facts are qualitatively different from the domain facts since
they deal with how those £ :: are to be used rather than stating truths about objects in the universe;
they refer to ths Linding status of varizbles, the order of processing of conjuncts, the method of
representzsion for fact classes rather than Zen or automotive diagnosis and repair, Thus they encode
meta-knowledge (meaning *knowledge about knowledge®) and are said to be at the meta-level, It is
MRS’s extensive facilities for representing and using this kind of information that give it the name
“Meta-level Representation System®. We will see many more examples of meta-level knowledge, but
first we need some background to show why it’s necessary.

We have already seen, in the case of predicting the outputs of electronic devices, that forward.
chaining can be more efficient than backward chaining. This piece of meta-level information was
put into 2:tion by asserting the input values rather than stashing them and by telling MRS to
forward-chain from assertions. When is this & good idea in general? To discuss this, we need to
think about the structure of the rule bass. Suppose that, for any given conclusion (such as the value
of an output), there a dozen different rules for deducing it. Then a backward-chaining system has
to try all of these even if only one of them leads to a solution. Then again, if a given fact (say the
value of an input) is used in the premises of a dosen differeat rules, then a forward-chaining system
might trigger all of these rules when only one of them leads to the desired answer. Fig. 3 illustrates
the difference in the two types of rule base in diagrams showing rules as nodes, with an arc showing
that the conclusion of the rule at the left end unifies with part of the premise of the rule at the right
end.

Figure 8 Good for forward chaining Good for backward chaining
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Applying this simple analysis to the family relations example in section 4.2, we see that the only
3 chaining occurs on the Child relation; it appears in one conclusion but three premises, therefore the
; database structure is best suited for backward-chaining. -

: Cesrtainly it's true that in many real cases the choice is not so simple, for example when the
database diagram contains loops. But we shall now try to get MRS to do this kind of analysis
4 automatically. Being s meta-level system, MRS can reason about how to do things using facts
which the uzer can provide, thereby directly inJuencing the operation of the system. Specifically, it
uses a backward-chaining theorem-prover and meta-level facts tn solve meta-level problems. When
given a command such (ASSERT <p>) MRS calls a stripped-down version of TRUEP called trtruep
on the goai (toassert <p> kmethod). trtruep is stripped-down in the sense that it doesn’t have
access to any meta-meta-level, 8o it runs pure backward-chaining. Thus all that's necessary is to
stash a fact of the form

(IF <Jatabase suitable for forwvard-chaining>
(toassert &x fc)).

Notice that, at the meta-level, variables begin with & instead of $. The meta-level theorem-prover
treats all base-level variables as constants; the base-level theorem prover treats meta-level variables
as constants. This is actually done by having two different unification routines, one for each level.
Often, users who are happy vith base-level programming are wary of workirg at the meta-level,
perhaps equating it with ‘system hacking’. Nothing could be further from the truth: the meta-level
is for expressing and using abstract, high-level knowledge about how problems should be solved. So

A AR R

% to overcome your trepidation or distaste, we're going to plunge in and do an example that’s probably
gﬁ more complex than anything you'll ever want to do at the meta-level. We shall implement & zimple
g definition of the predicate

5 -*3atabase suitable for forvard chaining>

3

A which will involve some quita tricky problems.

E Interpreting simplistically the above analysis, we'll say that a database is suitable for forward
3 chaining if

"— the average number of premises unifiable with each conclusion

is less than

the average number of conclusions unifiable with each premise.
This approximately corresponds to the forward-search branching factor being smaller than that for

backward search.
To convert this into an MRS predicate, the top-down approach will be used. The basic condition

is
(IF (FC-Indicated) (toassert &p £c)).
Note that FC-Indicated has no arguments: it is a condition on the whole database available at
the time we make the assertion that causes MRS to try to find out how toassert. From the above
definition we have
(IF (ALD (ForvardBranch kffactor)
(BackvardBranch abfactor)
(< &ffactor &kbfactor))
(FC-Indicated))

We will define just the forward branching factor here and leave the rest to the reader’s fertile
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imagiuation.

(IF (AND (BAGOF &=
(AND (IF &prem &concl)
(NoOfNatchingPremises &concl &n))
&matchaumbers)
(Average &matchnumbers kffactor))
(ForwardBranch &ffactor))

To understand this, recall that (BAGOF <X> <P> <8>) tries to find every solution for <P>. Thus
for the first part of the conjunction, (IF &prea &concl), what actually happens is that LOOKUPS
returns all the rules in the database just as if IF were an ordinary predicate, and &prem and &concl
are bound appropriately. Then for each kconcl we find the number of premises it matches (which
is the number of rules it can trigger in forward chaining) and BAGOF returns a list of these numbers.

Carefully avoiding insulting the reader with an exposition of averaging, the only remaining
problem is NoOfMatchingPremises. The approach is similar to the outer loop: make a bag of all
the rules in the database, then find the length of the bag; but this time only include those rules with
a premise that matches the &concl we're looking at.

(IF (AND (BAGOF &lhs ;1hs is as good as the rule if we're only ccunting.
(AND (IF &lhs &rhs)
(NatchingPremise &concl &lhs))
&natchingrules)
(LENGTH &matckingrules &n))
(NoOfMatchingPremises &concl &m))

To write NatchingPremise, we have to deal with the two basic types of premise — the atomic
proposition and the conjunction of atomic propositions. We'll ignore disjunctions and more complex
forms for now.

Whatever the type, we must have a way of deciding if two propositions match. We can’t use
= because we are comparing base-level propositions and to prove = the meta-level theorem-prover
uses the meta-level unifier. There is a base-level unification routine available called batchp, but it’s
a LISP function not a built-in mrs predicate. So there two questions that spring to mind: firstly,
how to interface to a LISP subroutine so that it looks like an MRS predicate; secondly, how to
discover that batchp is the name of the function we need. The answer to the second question is
that chapter 10 deals with all the system routines available that might be useful to the user. The
first question is more tricky.

Normally, to interface a LISP routine to make it lock like a predicate you would use the *com-
putable representation” mechanism or stash a procedural attachment for it using totruep (both
discussed in chapter 8).

However, the meta-level theorem-prover is a stripped-down version that doesn’t cater for these
luxuries. A cheap and cheerful method that works at the meta-level as well as the base level is to
use the Done built-in predicate:

(Done <LISP expression> <term>)

succeeds if the result returned from the execution of the LISP expression unifies with the term.
Obviously, any MRS variables in the expression will be instantiated (if possible) before the call to
LISP is made. In this case, we know that batchp succeeds if it returns a list (as opposed to NIL) so
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we just have to make sure the term only unifies with a list. After this horrendous plunge into detail,
we are ready to write MatchingPremise.

(IF (AND (= &lha (AND . &premisaes))
(Nezber kpremise kpremises)
(Done (Batchp &premise &concl) (&bindings)))
(MatchingPrenise &concl &lhs))
(IF (AND (UNXNOWN (= &lhs (AND . &premises)))
(Done (Batchp &lhs &concl) (&bindings)))
(MatchingPremise &ccacl &lhs))

The purpose of going through this example in gory detail has been not so much to provide a
useful meta-level tool for database analysis (it would be quite inefficient to go through this analysis
for every ASSERT), but more to show that programming at the meta-level is no harder than at the
base level, or perhaps I should say just as easy. The difference is simply that the subjects of the
meta-level predicates are facts instead of domain objects. .

§6.4 Expressing control strategies at the meta-level

In most programming languages, there are instructions that achieve the necessary computations and
there are instructions that order those computations, decide which to perform and how often, and
in general decide what gets done. The instructions look just like the computational instructions, use
data structures such as flags, index registers, queues and so on, and are generally intermingled with
and seldom distinguished from the rest of the program.

We have already ssen that in MRS the concept of a program as a series of instructions is replaced
by the complementary ideas of knowledge and inference. The same process can be zpplied to the
control structure of a program. The control structure is really a procedural expression of meta-level
knowledge about what should be done when. The natural course of action in MRS is to express this
knowledge ezplicitly and use it inferentially to decide what to do. In defanlt mode, MRS just uses
depth-first backward chaining, using facts and rules in order of recency of creation, and proving
conjuncts and disjuncts left to right. These are all arbitrary choices. Meta-level control knowledge
is expressed by specifying preferences between tasks as to which should be done first, and this is
sufficient to allow a broad range of control strategies to be implemented.

The lowest level of task is the single inference step. The task preferences are expressed using
the predicate PREFERRED; thus when the system has a choice of tasks, as when more than one rule
can be used to prove a proposition, it tries, for each pair of pending tasks, to prove the proposition

(PREFERRED &ktaski &ktask2).

The preference relation induces a partizl ordering on the tasks, and the most preferred task is chosen
for execution. However, since this mechanism is time-consuming and not always needed, the default
mode of operation ignores preferences. The preferred flag should be set to T for this facility to
operate.

By using conditional preferences, which depend on arbitrarily complex task properties, we can
create very sophisticated control structures. One limitation on the complexity is the amount of
information available in the task description; the information can include the context in which the
task is being invoked, the history of the computation leading to the invocation, the available resources
for its completion, the reasons for its invocation and so on. These considerations are particularly
important in constructing autonomous systems and new inference routines. The following section
deals with a concrete task class.
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§6.5 Control structure examples in backward chaining

Since backward chaining is the usual theorem-proving method at the base level, we will show in
detail how task ordering can be used to implement control structures for it in a number of ways.
The routine that performs the single inference step is bedisp, which has four arguments:

gl the list of goals to be satisfied.

al the binding list for the variables in gl.

1 a justification list containing the names (P123 etc.) of the facts used in
deriving the current gl from its predecessor.

ce a stack of the goal lists preceding the current gl. Each list is followed

by its corresponding j1.
Thus, if we had a query Q, and a database containing

P112: (IF (AXD A B C) Q)
P113: A

and the system had reached the goal of proving B, the call to bedisp would have the following
arguments:

gl (B C)

al the appropriate binding list

i1 , (P113)

ce ((A B C) NIL ((AND A B C)) (P112) (Q) NIL)

As you can see, it takes a step to go from a goal list ((AND A B C)) to the subsequent list (A B C).
Now, given two bedisp tasks

(bedisp &g11 &all &j11 ikcel)
(bedisp £g12 &al2 &§12 &celd),

how do we express control knowledge as a preference between them? Obviously we will use the
meta-level inference capability of MRS to make the choice dependent on some condition on the two
sets of arguments:

(IF <condition on both sets of gl, al, §1 and ce>
(PREFERRED (bedisp &gll &all &j11 &cel)
(bedisp &gl2 2212 &j12 &ce2)))

Let us view the theorem-proving process as a search. If we wanted to implément a breadth-first
architecture, rather than the default depth-first (e.g. if we wanted to guarantee finding the shortest
proof) we would simply use the condition

(IF (AND (LENGTH kcel &l1)
(LENGTH &ce2 &k12)
(< &11 &12))
(PREFERRED (bcdisp &gli &all &jl1 Xcel)
(bedisp &gl2 &al2 &j12 &ce2)))

since this means that the shortest existing derivation path will always be expanded first.
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If we wrote the length condition on gl instead of ce we would have a simple best-first search,
based on the shaky but often useful premize that a smaller number of goals means a speedier solution.

These are the most general forms of preference imaginable. We can use more delicate instru-
ments; for instance, suppose we have a search-based problem-solver which uses a predicate (Succ
$parent $child) to generate successors. Then we can implement an evaluation-based best-first
search as follows: '

(IF (AND (Evaluation kparentl &vi)
(Evaluation &parent2 &v2)
(> &vi &v2))
(PREFERRED (bcdisp ((Suce &parentl Xchildl) . &gll) &all &j11 &kcel)
(bcdisp ((Succ &parent2 &child2) . &gl2) &al2 &j12 &kce2)))

where presumably Evaluation would, for efficiency purposes, be a procedurally attached LISP
function. .

Much work remains to be done on the meta-level expression of control strategies, but MRS’s
capabilities are sufficiently general that the user should be able to devise a way to express cleanly
the control knowledge that she has.

%
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Chapter 7
Theories: individually wrapped databases

The word theory in MRS is used to describe a set of facts in their own database. Up to now,
we have treated all facts as equals, belonging in one big, finite but unbounded database. With
the notion of theories we can begin to trzat databases as objects in themselves. One of the things
objects often have is a name. The default database you have been using so far is called the global
theory. All the facts in it know they’re there: the proposition symbol for each fact has on its theory
property the word global.

Clearly, the burning question is *“Why would I want to have more than one theory?®. Well, the
technical use of the term is not so far from the everyday meaning; if you have more than one theory
about something then you can use more than one theory to keep your theories in. The competing
theories might be as different as the wave and particle theories of light, or the Freudian and Gestalt
theories of human behavior; or they might just describe different hypothetical situations in a search
space. Another common use of theories iz for efficiency purposes. If one is solving mathematical
pussles then there is no need to search jor rvlcs and facts through an encyclopadic collection of
knowledge about the lives of composers and ecclesiastizal architecture that might be present in
a global theory. By dividing the total knowledge into different areas, one achieves an automatic
focusing of attention onto the relevant information if the appropriate theories are used.

The key idea is that the ability to treat sets of facts as objects gives the ability to compare, select,
rank, exclude, divide, combine, distinguish and otherwise mess around with bodies of knowledge,
thus conferring upon the user a rich, new opportunity for the manipulation of information.

§7.1 Getting facts into and out of theories

As mentioned above, all facts stashed by the user go by default into the theory global. This is
because global is the initial value of the variable theory, which determines the current default
theory for stashing. Thus to create a new theory one can set the value of theory and start stashing.
A alternative to use the following theory-specific versions of the standard database routines:

thassert (thassert <p> <th>) asserts <p> in theory <th> and sets the value
of theory to <th>,

thunassert (thunassert <p> <th>) unasserts <p> from theory <th> and sets
the value of theory to <th>.

thstash Rather like thassert.

thunstash Rather like thunassext.

A theory can be emptied by calling empty on it. One can also create a whole theory at one go
by saying
(deftheory <th> <p; >...<pa >)

" which first empties <th> and then asserts the propositions into it.

§7.2 Selecting which theories to use

Having a current default theory for stashing is all very well but when it comes to doing a lookup
one might want to have more than one theory accessible. The value of the variable activetheories
is a list of the theories which are available to lookup. The global theory is always available. Thus
you can set the value of activetheories yourself or use the commands
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(activate <th; > voo <thg >)
which adds the specified theories to the active list, and
(deactivats <th; >...<th, >)

whizh takes them off the active list.
The user can specify a representation for a class of propositions that is specific to a given theory
by asserting

(threpn <p> <rpn> <th>).

This will be effective while <th> is active. One should be aware that the result of a lookup on a
fact which has two different representations in two active theories is undefined.

The subroutine (contents <th>) prints out a list of the pr facts in a theory, each preceded
by its associated proposition symbol.

§7.3 Related theories

Suppose we have a general theory LogicProgramming and some specific theo-ies such as MRSPro-
gramning and PROLOGProgramming. All of the facts in the specific theories are notionally part of the
subject matter of logic programmig; thus when we activate LogicProgramming we would like the
language-specific facts to be available also without having to duplicate them in the overall theory or
activate each subtheory explicitly. MRS allows the user to do just this (surprise, surprise) by simply
asserting

(includes 'LogicProgramming 'NRSProgramming)
and so on. The effects can be undone by asserting an unincludes fact for the pair of theories.

includes and uuincludes are also available as subroutines which can be calied with the theories .

as arguments, giving greater efficiency.
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Chapter 8
Procedural attachment

Procedural attachment is a term which denotes the interfacing of procedural information (i.e.
applicative or imperative code) to a declarative system. The purpose is to achieve greater efficiency
for certain operations at tha expense of the generality and explicitness provided by the mechanisms
of deduction. )

Procedural attachments in MRS come in two flavours: the first type might be called task-related
and involves the replacement of system functions for say proof or retrieval with special-purpose user
code or other, non-standard routines; the second type is predicate-related, involving replacing the
normal deductive or look-up procedures for certain predicates with programs that achieve the same
end with greater speed or using less space.

§8.1 Task-related attachment

For any given top-level system task <T>, the user can designate the LISP function to perform it
for arguments matching a pattern by stashing a fact of the form

(to<T> <pattern> <function name>).

As previously mentioned, after the task is invoked by the user MRS will attempt to find out how to
perform it by looking for just such to<T> facts in the database. A precautionary note: since only
one way of performing a task is needed, MRS will just use ths first one it finds; the fact that the
meta-level theorem prover does a lookup before trying rules means that unconditional propositions
will always have precedence over rules, so default procedures may have to be unstashed before
conditional attachments become effective. For instance, the default assertion method is stored as

(toassert &p pr-stash)
so if you wanted to add a conditional fact such as
(IF (FC-Desirable &p) (toassert &p fc))

you should first either remove the default by unstashing it, or replace it with a conditional default
whose antecedent is always true (the standard one is (= T T)).
The tasks for which this mechanism is implemented are as follows:

(un)assert Usual choice is whether to forward-chain or not. Certain ‘system’ facts
require special routines, e.g. (toassert (repn . &x) repn-assert).
Each representation method also has its owa routine.

lookup(s) Representation-dependent.

(un) stash Representation-dependent.

truep(s) To procedurally attach particular predicates or change the inference
method. :

cache Special case — invoked automatically but otherwise like stash. See
chapter 11 for a discussion of caching.

edit To specify the editor to be used for direct database editing (see chapter
12).

monitoz(s) To affect how database assertions are monitored (see chapter 12).




Chapter 8:  Procedural attachment 41

output (a) To affect how facta are displayed (see chapter 12).

Not all of these tasks can be handled independently. If a fact is stashed using a non-standard
representation, it must be retrieved using the appropriate routine for that representation. Such
co-ordinated changes are best handled using the repn mechaniam described in the next chapter. In
that chapier we also deal with the alternative inference routines available, some of which require
specialised representations also.

§8.2 Predicate-related attachment — built-in predicates

As we have already seen, some predicates in MRS are evaluable; that is, they are not defined by
rules or simple facts, but have computable truth conditions. The arithmetic relations are the prime
examples. Equality may also be viewed as a compntable predicate, with a procedural attachment
to the unification routine. The predicates for handling sets and Lists, including length, are also
evaluable.

These predicates are all attached using tolookup(s) and totruep(s) facts which are in the
initial MRS database. You can inspect these facts by calling PRFACTS on the predicate in question.

. (* x3...x4 y) succeeds if y unifies with the product of x; .. x,.

+ (+ x1..Xn 7) succeeds if y unifies with the sum x; .. .xn.

- (= x y z) succeeds if z unifies with the difference of x and y.

/7 /7 x ¥ z) succeeds if z unifies with the quotient of x and y.

< (< x y) succeeds if x is less than y.

> (> x y) succeeds if x is greater than y.

<= (<= x y) succeeds if x is less than or equal to y.

>= (>= x y) succeeds if x is greater than or eq;xal to y.

Disjoint (Disjoint x y) succeeds if the lists x and y have no common elements.

Done (Done x t) succeeds if the result returned from executing the LISP
expression x unifies with the term t.

Element (Element x 1) succeeds if the object x is an element of list 1.

ElementsIn (ElementsIn b s) succeeds if s is the set of elements in bag b.

Inter (Inter x y z) succeeds if z is the intersection of lists x and ¥

Intersect (Intersect x y) succeeds if lists x and y have a non-empty intersection.

NAnd (MAnd p 1) succeeds if predicate p is true of every element in list 1.

MAndCan (MAndCan p 1 s) succeeds if s is the union of the lists y that satisfy (p
x y) for each elememt in list 1.

MAndCar (MAndCar p 1 8) succeeds if s is the set of objects y that satisfy (p x
y) for each elememt in list 1.

Member is a synonym for Eiement.

NenList is & synonym for Element.

SetDiff (SetDiff x y z) succeeds if z is set difference of x and y.
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Subeet (Subsat x y) succeeds if x is a subset of y.
Union (Union x y 3) succeeds if z is the list formed by appending x and y.

Another class of evaluable predicates is that of the metalinguistic predicates — predicates
dealing with relations outside of the object-level universe that treat their arguments as syntactic
objects without reference. Brcauze of this property, one could only implement these predicates in
‘pure’ logic programming by using a vast table of all the tuples satisfying the predicate. Strictly
speaking, the arithmetic predicates are also in this class. It includes the (self-explanatory) arithmetic
predicates integer and number, and the numeric equality predicate num-=. This predicate works
exactly like = except that when both its arguments are numeric it performs a comparison with a
tolerance given by the value of nun==-threshold, which is initially 0.0001. Two other predicates
allow examination of the binding status of variables and expressions:

Variable (Variable <x>) succeeds if <x> is a currently unbound variable,
Ground (Ground <p>) succeeds if the expression <p> contains no unbound
variables,

A nice example of the use of Variable and Ground is the following (partial) implementation of an
addition predicate that handles uninstantiated arguments:

(IF (AND (Ground $y)
(Ground $z)
(Variable $x)
(- $z $y $x))

(+ $x $y $2))

To facilitate interaction between MRS and LISP programs, a predicate (Value <x> <v>) is
provided which succeeds when <v> iz unifiable with the value of <x>. Also (Property <x> <v>
<p>) succeeds when <x> has value <v> for property <p>. Asserting a Property or Value fact
has the effect of setting the property or value.

§8.3 Predicate-related attachment — computable representations

The computable representation mechanism in MRS allows the user to specify classes of propcsition
for which the result of a 1ookup (and hence of a truep) is computed by a LISP subroutine, which
will be known as the associated LISP subroutine (or ALS) for that class.

This is achieved by asserting a fact of the form

(repn <p> <rpa>)

which means that propositions matching <p> will be handled using the computable representation
<rpn>. The assertion of the repn fact causes a tolookup and a tolockups fact to be stashed for
the proposition class, which attaches it to the appropriate interface rcutines which call the ALS and
then package the results into the proper binding list format expected by the theorem prover.

The ALS must be on the LISP property of the predicate involved, so one must assert the fact

(Property <pred> <ALS> LISP).

The <rpn> value used will be a mnemonic code specifying how the arguments are to be handled,
whether a value is to be returned, whether binding lists are to be single or multiple and so on. The
code will determine the interface routines to which the predicate will be attached. The rest of this
section deals with the codes that MRS provides.
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The basic thing to decide is whether the LISP routine is to return a value that is a function
of its arguments, or to 2ct as a predicate in itzelf (e.g. FLOATP). All function codes begin with
F, all predicate codes begin with R (for Relation). if you always want a given predicate to be
procedurally attached regardless of its arguments you can replace the repn and DEFPROP entries
above by asserting

(relnproc <pred> <ALS> <rpa>)
for relations or
(funproc <pred> <ALS> <rpn>)

for fur:ctions. .

Suppose we decide that the LISP routine is to return a value. The <rpn> code will begin
with F. MRS predicate will need to have an extra argument which will be unified with the result
when the function returns. Thus a LISP function (£ x;...X,) will be attached to a predicate (£
X1..Xn ¥), and y will be unified with the result returned by the function £. Often, we will want
to use arguments which are themselves functional expressions. MRS allows for this in the second
letter of the code which is E or Q. Q (fer Quote) means that the arguments are passed ‘as is’ to
the subroutine. E (for Eval) means that arguments which are terms beginning with predicates that
have functional attachments are treated like functional expressions and evaluated by calling lookup
on them with an extra argument. An example will make this clearer. Suppose we have a predicate
(Average $a $b $avg) which we want to attach to a LISP function (Average a b). If we declare
the predicate as having representation FE, then we can v-e i*, cr any other FE or FQ predicate,
functionally as its first or second argument:

(Average (Average 2 4) § $x)

would succeed with $x bound to 4. As one might expect, we can also handle the case where we
want to perform a num-= unification on the result rather than a straightforward =, To do this, use
a third code letter A (for Arithmetic). We would probably want this for the averaging predicate
so we would declare it by saying

(ASSERT ’(funproc Average Average FEA)).

Now for the computable relations, which are a little more complicated. The first letter of the
code will be R; the ALS will have the same number of arguments as the predicate The second letter
is still E or Q as above. Plain RE and RQ relations are treated just as you would expect: if the LISP
routine returns NIL the lookup (or truep) fails; if it returns a non-NIL value the lookup returns
((T . T)). For example, to attach FLOATP we would probably use the RE representation:

> (ASSERT ’(relsproc FLOATP FLOATP RE))
DONE

>(TRUEP *(FLOATP 1.34))

NIL

Often we will want to be able to handle procedural attachments for predicates whoze arguments
may be unbound variables — the ALS will produce the correct bindings for the variables and return
the appropriate binding list. If we add a B (for Binding) as the third letter of the code, this means
that the ALS will return its own binding list (or NIL). Using this, we could write an averaging
predicate that worked when say the first argument was unbound. To return binding lists, the ALS
(and not MRS) will need to test its arguments to see if they are variables, perform the appropriate
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cemputation accordingly and construct a binding list to return. This is made easier by the availablity
of the system functions for handling variables and binding lists, which are described in chapter 10.

> (ASSERT ' (relnproc Average AverageP REB))
DONE '
>(DEFUN AverageP (x y avg)

(coND ((AND (NUMBERP x) (NUMBERP y))

(batchp (QUOTIENT (TIMES x y) 2) avg))

; ((AND (NUNBERP x) (blvarp y) (NUMBERP avg))
3 (batchp (DIFFERENCE (PLUS avg avg) x) y))
((AND (blvarp x) (NUNBERP y) (NUMBERP avg))
(batchp (DIFFERENCE (PLUS avg avg) y) x))))

AVERAGEP
>(TRUEP '(Average $x 3 4))
((sx. B (r. 1)

. In some cases, REB and RQB relations will want to return multiple sclutions, for instance if we had
1 a quadratic solver (Quad $a $b $c¢ $x) which might want to return 0, 1 or 2 different bindings for
i $x. To do this, add a fousth letter M (for Multiple).

There exists one extra type of attachment which is a hybrid of the functional and relational
classes. The RQFM representation allows for ALS routines which operate like functions on the first
n = 1 arguments but return a simple list of values which are to be interpreted as alternatives. The
RQFM designation will cause a multiple binding list to be automatically constructed for the last
argument (if unbound); if bound, the predicate will succeed if the last argument unifies with any of
the returned values.

Thus, in summary, the available ways of getting LISP programs to do the work of predicate are
FE, FQ, FEA for functions retursing values, RQFM for multifunctions, and RE, RQ, REB, RQB,
REBM, RQBM for relations.

To create one's own computable representation (if one can think of any other possibilities, that
is) one should assert a fact of the form

(zrepn-method <rpn> <op> <method>)

for the <op>s lookup and lookups, where the <method> is an appropriate interface routine.
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Chapter 9
Alternative representations and inference procedures

For certain coraputations and ceriain classes of facts, » representation other than the standard
MRS indexed list structure is useful, and ceveral such representations are provided. Moreover,
some problems are beat solved using inferencs procedures other than backward chaining with modus
ponens. In some cases these procedures operate with the standard representation, in others they use
specialized forms. :

§9.1 Representations

The representations discussed here are essentially storage and retrieval methods for facts, and af-
fect how the stored facts appear snternally. If the database routines are well-written, the chosen
representation need have no effect on the external appearance of the facts at all. A specific represen-
tation can be viewed as an implementation of an abstract data type with the operations stash anu
lookup. Different representations are more or less efficient for these operations for different classes
of facts. MRS allows the user to specify that all facts matching a pattern <p> should be stored
using representation <rpa> by asserting a fact of the form ’

(repn <p> <zpn>).

The effect of this is to cause the appropriate tolookup and tostash facts to be entered into the
database. Since these facis operate at the meta-level the pattern <p> must use meta-level variables.
The currently implemented representations are:

pr The default; each fact is stored verbatim on the pattern property of a
unique proposition (e.g. P123). The facts are then fully indexed on every
position in the list structure of the fact. Only pr facts are accessible to
the full range of theory-related commands (see chapter 7).

ent Conjunctive normal form; in this representations all facts are stored as
disjunctions of literals (a literal is an atomic proposition or the nega~
tion of one). The whole database is an implicit conjunction of these
disjunctions, hence the name. For example, (IF A B) is stored as the
disjunction of (NOT A) and B. This representation is used by the resolu-
tion routines.

dof Disjunctive normal form; like CNF, but the database is a disjunction
of conjunctions of literals. One can write a DNF resolution routine if
desired.

Pl Property list representation; useful for storing the values of unary func-

tions on (or attributes of) concepts; for example, (Arity Nember 2) is
stored by putting 2 on the Arity property of Nember.

tl is useful for storing unary relations such as (IsWonderful NRS).
dl is useful for storing many-many binary relations such as SameAge.

For example, suppose we wanted to use a lot of facts about people’s ages. Since age is a
many-orne relation, we would use the pl representation for efficiency. Tn achieve this, enter

(ASSERT *(repn (Age &x &y) pl)).

Then, when we say
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(STASH *(Age Nancy 91))
the attribute is stored directly on Nancy's property list:

(PLIST 'Nancy)
(Age 91)

The t1 representation also uses the property list directly, by putting a T on the appropriate property
of the concept involved. The dl representation uses proparties with multiple values stored as 3 list;
for example, the property list of Henry VIII might end up as

(HaaWife (KatharineOfA AnneB JaneS Anue0fC CatherizeH KatherineP)).

With each of these property list representations the queries can have only the value uninstantiated,
and variables in the facts will not be handled properly. This is an example of the generality/efficiency
trade-off common in representations (and procedures for that matter).

The user can create her own representations by specifying the storage and retrieval routines for
it; to do this one a<serts facts of the form

(repn-method <rpn> <operation> <routine>)

for the operations lookup, lookups snd stash. As an example, we'll take the case of storing
attributes of objects identified by number, for instance a database of customer attributes using facts
like

(CustomerName 3423 (John Q Public)).
To have these facts stored in an array, with its instant-access advantages, we would say

(ASSERT '(repn-method ar lookup ar-lookup))
(ASSERT ’(repn-rethod ar lookups ar-lockups))
(ASSERT ’(repn-method ar stash ar-stash))
(defun ar-lookup (p)
(batchp (caddr p) (funcall (car p) (cadr p))))
(defun ar-lookups (p)
((lambda (b1) (cond (b1 (list bl,) (t nil))) (ar-lockup p)))
(defun ar-stash (p)
(apply* ’store (1iast (car p) (cadr p)) (caddr p)))
(ASSERT ’(repn (CustomerNawe &muzber &name) ar))

Notice that the above routines only work if the customer number is already known. If this were
not the case, they would have to be extended “o handle queries such as (CustomerName $n (A N
Other)) by recognizing that the first argument to the predicate was a variable a=d then searching
the entire array to find the index number for the given customer; for this class of query the array
representation would be extremely inefficient. One solution would be to have ar-assert store the
fact in both ar and pr representations, and have u'-lookup choose which to use ac:ording to the
binding status of the arguments in p.

§9.2 Alternative inference procedures

MRS provides several modes of inference other than the standard backward chaining. Each is
appropriate for a fairly ill-defined range of situations and deciding which to use is still something of
an art. As with almost anything else, the user can write her own inference routines; the simplest to
implement will be of the ‘black-box’ type, which take a proposition as argument and return a binding
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list. They will be invoked using a totruep attachment and their internal workings will avoid the
use of the scheduler architecture. All of the MRS-provided routines are of the non-black-box kind,
putting their individual inference steps on the agenda so that the user can create control strategies
to increase efficiency.

9.2.1 Forward chaining

Forward chaining has already been covered in an earlier chapter. There only remains to describe
the task structure. The inference step task is very simple:

(fcdisp p)

where p is the proposition to be asseried and from which the forward chaining will take place.
Multiple possibilities occur when a fact satisfies the premise of more than one rule, so that fedisp
tasks are placed on the agenda for each of the rule conclusions. A typical control strategy would
give preference to the conclusion most likely to contribute to the desired goals.

9.2.2 Residue

The residue routine operates in a backward chaining fashion, the difference from the usual
tzuep method being that it is allowed to assume the truth of propositions contained in assumable
statements, or which can be proved to be assunable. Thus, if one stashes a fact (assumable <gq>),
then a call to (residue <p>) will do a backward-chaining proof of <p> and in doing so assume
that <q> is true. A list of all the facts assumed in the proof of <p> is returned (residues <p>)
returns all possible lists of such facts. Each list of facts is called the residue of <p>.

That’s all very simple and straightforward I'm sure. What is not 3o clear to the uninitiated is
what it’s all for. Well, one use is for the expression of default rules. A typical example might be

(IF (AND (Bird $b) (UNPROVABLE (NOT (Flies $b)))
(assumable (Flies $b))).

The use of residues and assumable facts has several advantages: default assumptions upon which a
solution is based are distinguished from solid facts; the user is given a list of assumptions which he
can check for validity in the individual cases; the addition of an exception to the database such as

(NOT (Flies OllyTheOstrich))

will not invalidate the rule, whereas if the conclusion were definite and not just assumable contra-
dictions could arise, particularly if forward chaining or caching were in operation.

A second, and perhaps the major, use of residues is for synthesis of complex objects from
specifications. For instance, we coula take the rules for circuit bebavior from chapter 5, tell the
system it could assume any connections it wanted and call residue on the desired i/o pair and have
it return the circuit it needed to assume to get the required behavior, described by a list of assumed
facts looking very much like the Cescriptions of circuits as defined by the user. That, at least, is the
idea.

Residues are impleinented by the subroutine bxr. The task step is

(brdisp gl al theory j1 ce)

where all the arguments are tLe same as for bedisp except for theory, which contains the assump-
tions made o far in deriving the goal list gl.

9.2.8 Resolution
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Unlike modus ponens, the resolution inference rule

(OR Ay...A,), (OR B,...B,)

(OR Ay...Ai—y Aiy1...Am By eeeBjat Bjy1...By)o where A;0 = (NOT Bjo) or vice versa

is complete, i.e. all possible logical conclusions of a set of facts can be drawn using the rule. This is
probably the major reason why one would use it. From the definition two drawbacks are immediately
apparent. Firstly, the rule itself is rather cumbersome and unintuitive in the sense that that normal
human modes of reasoning do not fit it well. Secondly, it requires that the database be in CNF, which
often renders facts unintelligible and/or greatly increased in sise. However, for such applications
as mathematical theorem-proving, resolution is still the method of choice, since with resolution one
does not need to worry about the incompleteness or directionality of repesentation inherent in a rule-
based system. With MRS’s ability to convert facts to CNF automatically, resolution is & serious
candidate for many applications. To prove a proposition using this method, the user should simply
enter ’

(resolutien <p>)

and the binding list will be returned just as with truep. resclutions needs no further comment.
What happens is that <p> is first negated, then added to the database in CNF. Resolutions are
then performed until an empty disjunction is created, signifying a contradiction. The rest of the
database can be created in CNF by starting off with

(ASSERT '(repn &p cnf))

which causes all subsequently entered facts to be stored in normal form, and all retrievals to be
performed accordingly.

The default strategy used is a set-of-support, linear-input strategy. The set-of-support strategy
is the resolution equivalent of backward-chaining: only resolutions involving a goal clause or a clause
whose derivation includes a goal clause are considered.

The standard resolution routine is rs, and the single inference step is

(radisp gl al theory)

where
gl is a list of the clauses produced so far by rcsolution with the original
negated-goal clauses .
sl is the binding list for the variables in gl;
theory is a locally-bound theory containing the original goal clauses.

9.2.4 Resolution with residues

resolutionresidue and resolutionresidues operate exactly as one would expect, performing
resolution with assumptions returned. rr is the standard routine, the inference step is

(zxdisp gl cl al theory)

where (he arguments are the same as for resolution with the addition of €1 which is the list of
assumptions made in deriving gl.
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Chapter 10
Useful system functions

There are several places where the user will want to write eome additional code of her own to
tailor the system to her needs. These include writing procedural attachments for predicates, new
computable representation interfaces, new representation storage and retrieval routines, formatting
and filtering routines for returned solutions and, last but not least, new inference routines. Since
MRS itself does all of these things, it is not sarprising that it contains a lot of useful subroutines
which are also available to the user.

§10.1 Testing for variables

In attached LISP subroutines, inference routines and often in ordinary MRS predicates one will want
to test expressions to see if they are ground or variable.

blvarp (blvarp x) returns T if x is a base-level variable, i.e. an atom beginning
with §.

mlvarp (nlvarp x) returns Tif x is a meta-level variable, i.e. an atom beginning
with &.

varp (varp x) returns T if x any kind of variable.

groundp (groundp x) returns T if x is an expression zontaining no variables.

§10.2 Matching and unification

These routines will come in useful in roughly the same areas as the variable testing routines. The one
that is needed will depend on the level (base- or meta-) and the (non)necessity for standardization
of variables. '

batchp (batchp x y) is a base-level unification routine that standardizes vari-
able. first, and returns the binding list (if any) for the variables in x.

matchp (matchp x y) is a meta-level unification routine that standardizes vari-
ables first, and returns the binding list (if any) for the variables in x.

samep (samep x y) is a base-level routine that returns a binding list for the
variables in x if the two expressions are the same up to variable renaming.

unifyp (unifyp x y) is a base-level unification routine that returns the most
general unifier of x and y (if any) but does not distinguish cccurrences
of the same variable in the two expressions.

§10.3 Binding lists

Along with multiple uses in inference routines and attached predicates, the functions for binding list
manipulation are very useful for formatting the solutions returned by truep.

getvar (getvar x bl) returns the binding for variable x from binding list bl.
getbdg (getbdg x p) = (getvar x (truep p))

getbdgs is liks getbdg but calls trueps and returns a list of values.

getval(s) (getval(s) '(r x1...X,)) =

(getbdg(s) vy "(r x1..xn ¥))
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lookupbdg (s)
lookupval(a)
plug

pluralize

singularize

is like getbdg(s) but uses lookup(s) instead of truep(s).
is like getval(s) but uses lookup(s) instead of truep(s).

(plug x bl) returns expression x with its variables fully instantiated
from the binding list bl, :

(pluralize bl) turns asingle binding list into a multiple one by putting
parenthesess round it.

(singularize bl) turns a multiple binding list into a single one by
taking the CAR of it.

§10.4 Tasks and the agenda

The following routines enable the user to write her own inference routines using the scheduler

architecture:
kb

tb

scheduler

(kb to<T> x;...X,) invokes the meta-level backward-chainer trtruep
to find out how to perform task <T> for the given arguments, then
performs the task and returns the results.

(tb <T> x;...xn) places the task <T> on the agenda with the given
arguments.

(scheduler) starts the deliberation-action process operating according
to the flags executable, executed and preferred.

§10.5 Miscellaneous routines

The following fu: ctions and commands operate only on facts in the pr representation.

datunm

pattern

mrsdump

mrsload

nrssave

(datun p) returns the proposition symbol for p.

(pattern d) returns the proposition for symbol d. Useful for unstashing
facts without typing them in verbatim.

(mrsdump th £) writes out the propositions in theory th onto file £ in
such a way that they can be reloaded using a LOAD.

(mrsload £) loads naked propositions (i.e. without stash commands)
from file £ into the current theory.

(nrssave th;...th, £) saves the propositions from the given theories
onto the file £ so that they can be reloaded using mrsload.
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Chapter 11
Tracing, caching and justifications

§11.1 Tracing

At present the tracing mechanism in MRS is the only form of debugging other than the LISP-
provided wutilities, and it is somewhat inadequate to say the least. Once the system has chosen a
task to perform (usually from the agenda), it will be printed out on the terminal if it matches with
the pattern <p> provided by the user with the command

(TRACETASK <p>).

Normally the pattern will be just &x and the resulting output will list each bedisp (or any other
disp) task with its arguments in a format slightly mcre readable than that provided by TRACE.
(UNTRACETASK <p>) turns off tracing for tasks matching <p>. To switch tracing off altogether
just type (UNTRACETASK).

§11.2 Caching

In performing a proof, the system produces not only the final result but also several intermediate
facts which are usually discarded without a second thought. This is often shockingly wasteful —
these results may have to be recreated for some later proof, or they may even be interesting in
themselves. MRS provides a simple caching facility whereby the built-in inference procedures (and
others if they so desire) can stash specified classes of intermediate and final results.

To et this to happen, just set the value of the variable cache to the name of the theory you
would like the results stashed in. See chapter 7 for a description of theories. To use the current
theory (the value of theory) set cache to T. When the time comes to cache a result <p>, MRS tries
to find a caching routine <r> such that

(tocache <p> <z>)

is true. The default is (cachebystash <p>) which behaves as described above. The user is free to
change this us she wishes by unstashing the default and adding her own restricted caching classes
or new caching routines. Due to the large number of results produced by even simple proofs it is
advisable to put them in a separate theory which can then be easily emptied. To turn caching off,
just type (SETQ cache NIL). :

§11.3 Justifications

One of the trumpeted advantages of expert systems is their ability to explain their own reasoning.
They achieve this feat by simply saving, for each deduction made, the premises, conclusions and
inference rule used. This does not of course happen automatically; or rather, it does provided the
justify flag is non-NIL. It should be set to the name of the theory in which you would like the
justifications stashed. If this sounds similar to caching, there’s more to come. Not only does the
justify flag cause saving of justifications, it also causes all the results that caching would cache
to be saved on the property lists of specially-generated proposition symbols which aren’t attached
to any theory at all. This is because the justifications refer to these intermediate results, and they
must be available for why and where (see below) to print them out.
A justification is a fact of the form

(just <concl> <method> <premise; >... <premise, >)

where the conclusion and premises (which include the rule used) are represented by their corre-
sponding proposition symbols, and the method is be, £c or whatever.
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The justifications are nsed by the two commands vhy and where. (why <p>), if a justification
exists for the proposiiion, prints out the inference method and the premises from which the proposi-
tion was deduced. (vhere <p>) gives the same informations for all inferences in which <p>) took
part as a premise. The following simple example illustrates these ideas:

>(SETQ justify T) +:¥1ill use current theory for stashing justifications
T
>theory
GLOBAL
> (STASH '(Nan Socrates))
P2ss
>(STASH *(IF (Nan $x) (Mortal $x)))
P286
>(TRUEP ’(Nortal Socrates))
(r . 7))
>(why ’(Mortal Socrates))
P288: (MORTAL SOCRATES) by BC
P285: (MAN SOCRATES)
P286: (IF (MAN $X) (MORTAL $X))
DONE
>(vwhere ’(Man Socrates))
P238: (MORTAL SOCRATES) by BC
P285: (MAN SOCRATES)
P286: (IF (MAN $X) (MORTAL $X))
DONE
> (PRFACTS 'just)
P287: (JUST P285 BC)
P289: (JUST P288 BC P285 P286)
DONE
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Chapter 12
More general input and output
The view provided o far of the MRS system is that of a ‘naked’ theorem prover, taking facts

and queries in predicate calculus as input and printing facts and binding lists as output. However,
since all the output mechanisms are implemented using default rules, the user can build any desired

interface for displaying facta. In addition, MRS provides a mechanism for asking intelligible questions

of the user; thus it is quite easy to build a system in which the user never has to see any predicate
calculus at all. Also described in this chapter are methods for monitoring the progress of inference
on a display, and for directly editing facts in the database.

§12.1 Asking questions of the user

Logic programming is particularly suited to the implementation of consultation systems — systems
that operate in the same mode as a human consultant, by being informed of the aser’s overall need
and then asking appropriate questions to determine the necessary information for the solution of
the problem.

The backward chaining approach to consultation makes the problem the initial goal, and works
back through the rules until it finds premises that can be supplied by the user, rather like having an
extra database accessible via the terminal instead of the lookup routine. We can use the procedural
attachment mechanism of MRS to implement this idea by having a special subroutine ask(s) perform
the function of truep(s) for the class of facts that the user is likely to know; for example an
interactive tictactoe program might have

(totruep (YourNove &x) ask).

First of all ask calls output on its argument <p> to display it in an understandable form (see next
section) and prints it out. Then it examines <p> to see if it can be answered by a yes/no, which
is the case if it has no free variables. If so, it asks the user if the proposition is true and returns
((T . T)) or NIL accordingly. If not, it asks the user to supply a value for each variable so as to
make the proposition true. The routine asks, which simulates trueps, prompts the user for all the
sets of values of the variables which satisfy the query. In most cases, unless truep is called directly
by the user on an askable query (which would be somewhat self-defeating), the routine used will be
asks rather than ask. However, many relations are really functional (i.e. have only one satisfying
binding) so the questions asking for multiple values can be a little irritating. For instance, one is
hardly likely to want to make more than one move at a time in a game of tictactoe. The routines can
accommodate this information if the user states that the predicate involved is actually a function:

(STASH *(Function YourMove)).

This will cause a single value only to be prompted for.

Often a proposition will be used as a premise of more than one rule. If it is an askable one, this
may have the annoying effect of causing the user to be asked the same question twice (if not more).
One solution is to tell MRS that the class of askable propositions is also to be cached - ask won't
ask something if it is already in the database. Furthermore, this can be used to produce a theory
containing all of the facts about a particular user that pertain to her problems which cun then easily
be stored permanently using mrasave.

§12.2 Displaying facts

All of the MRS routines that print facts call cutput or outputs to do so. The argument to output
is a single fact, that to outputs a list of facts. Facts are printed out by facts, contents, the tracing
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These facilities are best illustrated by running the output demo, which may be invoked by
loading the file OUTPUT-T. A number of output routines are implemented on the Symbolics machine
only, since they take advantage of its graphics capabilities. These are illustrated in the output
demonstration for the Symbolics machine.

§12.3 Monitoring

Particularly in a system using condition-action rules, or one using forward chaining, one will want
to monitor the changes made to the datzbase by assertions. For instance, a flight simulator will
want to continuously monitor such facts as the amount of fuel remaining and the current altitude.
MRS provides a mechanism for doing this using demons (see chapter 6). Once a proposition is
being monitored, any assertion matcking the proposition will cause a function to be invoked that
can either output che assertion directly or call a specialised routine for updating the appropriate
display.

Monitoring can be initiated for a class of facts matching <p> using the command (monitor
<p>). The command monitors takes a list of propositions to be monitored. The effects are as
follows. Firstly, forward chainirg is asserted for the proposition so that the monitor demon will
fire:

(toassert <p> fc).
Secondly, the demon is created:
(IF <p> (runnable (monitor-hook <p>))).

Now we have to decide if we're going to monitor the fact by just printing it out, or by maintaining
some display (such as a needle gauge or a digital readout) for it. To discover this, trtzuep is called
on a goal of the form

(tomonitor <p> <method>).

It is important to remember that the call to monitor is intended to ¢nstiate monitoring for its
argument, rather than actually perform it. Thus the tomonitor method, which will of course be
a LISP routine, set up whatever display window or file may be needed for monitoring the facts.
monitor-hook is the function that gets the facts displayed, and the tomonitor method must also
therefore provide some information for monitor-hook as to exactly how and where to display them.
The convention adopted is that it should return a CONSed pair whose CAR is the name of the
fuaction which will do the displaying, and whose CCR indicates where these facts are to be displayed
(it might be the name of a file, or a pointer to a window). The monitor function takes this returned
pair and uses it to create a fact in the database of the form

(ndisplay <p> <display function> <display argument>).

Now, whenever a fact matching <p> is asserted, monitor-hook will find the mdisplay fact for it
and call the display function with two arguments: the fact and the display argument. Multiple
displays for a fact can be handled because monitor-hook finds all the applicable ndisplay facts.

Clearly, the desired default display function must be output. Since output doesn’t require the
display argument, our default tomonitor method will just be a function that returns (cotput .
NIL), i.e.

(tomonitor &p (lambda (p) *(output)))
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facility, the justification routines why and where, and by ask. Moreover, the user can invoke output
directly for display and debugging purposes.
The output (3) routines work by calling trtruep (the meta-level theorem prover) on the goal

(tooutput(s) <p> <m>)

where <p> is the fact(s} to be printed. The returned output method <m> will be called on the
fact(s); thus the user can specify any desired output routine by stashing :. tooutput (s) fact for it.
The output routines can do anything the user wishes, from printing charts and trees to moving dials
or beeping Morse code. Several useful routines are provided, and described below.

The default tooutput method is pnl-output (pnl standing for pseudo-natural language). The
default tooutputs method is prop-outputs, which prints the facts verbatim, preceded by their
associated proposition symbol (as in the output from the facts routine). Sometimes, for instance
during debugging, one may want to print out facts in this default format instead of whatever fancy
format one has defined for them. The command (prfacts <t> <level>) (the arguments are the
same as those of facts) does just this.

12.2.1 Pseudo-natural language output

The pnl-output routine mentioned above is designed to provide a form of translation from
predicate calculus into English (or whatever) using templates. A template is essentially a sentence
with holes that are to be plugged with appropriate values. For instance, we would specify the
template for YourMove by stashing

(Template (YourNove &x) (Your next move is going to be &x)).

When output is called on a proposition p, it tries to find a template whose left-hand side unifies
with p (note that this will be a meta-level unification) and when successful applies the binding list
to the right-hand side and returns the result. This process is actually recursive; pnl-output calls
itself on each binding of a template variable before plugging it into the sentence. Thus suppose we
had a case in the tictactoe game where the program could predict where the user was going to move
and wanted to show off. Recalling that the moves are represented by the digits 1 to 9, we could add

(Template 1 (in the top left corner))
(Template § (in the center))

(Template 9 (in the bottom right cormer)).

12.2.2 Other output routines
Several output routines are provided with MRS for displaying information in various formats.
Each of the following functions takes a list of facts as its only argument:
indent-tree-outputs Prints out the binary relation described by the facts in the list as an
indented tree, if possible.

simple-bar-outputs Takes a list of facts describing a function with numeric range, and prints
out a simple bar chart containing the information.

table-cutputs Sorts the list of facts by predicate and arity, and prints out a table for
each relation. .
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This has all been very confusing, no doubt, but perhaps an exampla will help. The following
transcript comes from the output facility demo, and shows how to implement a history file of
database assertions using monitoring (while this isn’t the most exciting use of monitoriug, it is, at
Jeast, implementable in all versions of MRS):

NONITORING for dumb terminals = count up to ten->>

(STASH (QUOTE (IF (AND (NEAR-TEN $X) (< $X 10) (+ $X 1 $Y)) (NEAR-TEN $Y))))
(TRSTASH (QUOTE (TEMPLATE (NEAR-TEN &X) (&X 4s near tern))))

(MONITOR (QUOTE (NEAR-TEN $X)))
$X is near ten

(TRSTASH (QUOTﬁ (TONONITOR (NEAR-TEN &X) HISTORY-MONITOR)))
(MONITOR (QUOTE (NEAR-TEN $X)))

(DEFUN HISTORY-MONITOR (P &O0PTIONAL (FILE NIL))
(conD ((NULL FILE)
(LET ((STREAN (OPEN (QUOTE OUTPUT-DENO) (QUOTE OUT))))
(HISTORY-MONITCR P STREAM)
(coNS (QUOTE HISTORY-MONITOR) STREAN)))
((EQ P (QUOTE KILL)) (CLOSE FILE))
(T (PRINC P FILE) (TERPRI FILE))))

->>
(ASSERT (QUOTE (NEB'R-TEN 3)))
is near ten

is near te..

is near “en

is nuar ten

is near ten

is near ten

is pear ten

10 is near ten

O 0NN &

(UNMONITOR (QUOTE (NEAR-TEN $X)))

(LET ((IN (OPEN (QUOTE OUTPUT-DEMO) (QUOTE IN))))
(PRINC (READ IN)) (CLOSE IN))
(NEAR-TEN $X)

First we stash a simple rule for counting up to ten, and a template for printing its status. Then
we call monitor to establish default monitoring for NEAR-TEN, which will display it using output.
Then we add an additional monitor using the function history-monitor, which will print the facts
directly on a file. Using an optional argument, history-monitor can act as both the set-up and
the display function. Forward chaining for NEAR-TEN is turned on by monitoz, so when we assert
(NEAR-TEN 3) it counts up to ten, and each new fact is both displayed on the terminal and printed
on the file. At the end, we call unmonitor on the fact to terminate monitoring, and check the output
file to see that something was in fact printed on it.
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§12.4 Editing

At present MRS provides for direct database editing only on the Symbolics Lisp Machine, although
it is anticipated that this will soon be extended to the other implementations. There are two editing
commands:

facts-edit (facts-edit <t> <n>) finds all facts containing the tesm <t> (up
to the optional level <n>), and calls the appropriate toedit method for
those facts.

contents-edit (contents-edit <th>) finds and edits all facts in the theory <th>

(which defaults to the value of theory if omitted).

It is the job of the editing function to invoke the editing environment, and to return a list of all
the facts in their new form, including those remaining unchanged; if none are changed, the editing
function may return NIL.

It is also poesible to do editing by using an output routine which retains control, allows the user
to modify the facts displayed, and updates the database before returning. Thus the user can enter
information by merely mouse-setting a dial or gauge, as well as typing facts explicicly in an editor.
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Appendix A- Answers to exercises

§A.1 Answers to problems from chapter 2

10.

11.

12.

13.

14.

15.

16.

17

18.

19.

20.

. (Horse Dobbin)

Dobbin is a horse.

. (Hezber Dobbin Horses)

Dobbin is a member of the clazs of horses.

. (NOT (Horse Dokbin))

Dobbin is not a horse.

. (OR (Horse Dobbin) (Donkey Dobbin))

Dobbin is a horse or a donkey.

. (IF (Horse Dobbin) (Mammal Dobbin))

If Dobbin is a horse then he is a mammal.

. (IF (Horse $x) (Nammal $x))

All horses are man:mals,

. (IF (OR (Horse $x) (Cov $x)) (FourLegged $x))

All horzes and cows 2re four-legged.

. (AND (Mammal $x) (PourLegged $x))

Everything is a four-legged mammal.

. (IF (NOT (Horse Dobbin)) (Dutchman Ermintrude))

If Dobbin is not a horse then Ermintrude is a Dutchman.

(IF (NOT (Cow $x)) (Brown Dobbin))

If there is anything that isn’t a cow then Dobbin is brown.

(IF (AND (Horse $x) (NOT (Mammal $x))) (Cow $x))
Every horse that isn’t a mammal is a cow.

(IF (OR (= $x Dobbin) (= $x Tonto)) (Horse $x))
Dobbin and Tonto are horses.

(IF (AND (= $x Dobbin) (= $x Tonts)) (Horse $x))
Everything which is both Dobbin and Tonto is a horse.

(IF (AND (Mammal $x) (NOT (= $x Dobbin))) (NOT (Horse $x))
Dobbin is the only mammal that’s a horse.

(IF (AND (Horse $x) (NOT (= $x $y))) (NOT (Horse $y))

59

There is at most one horse. (Sometimes propositions are difficult to translate directly — it is
better then to construct a universe that is consistent with them and describe that universe.)

(NOT (Member $x $x))

Nothing is a membar of itself,

(IF (AND (Horse $x) (Browmn $x)) (Brown (TailOf $x)))
Brown horses have brown tails.

All dogs bark at their neighbours’ dogs. .

(IF (AND (Dog $d) (Meighbour $d $n) (BelongsTo $nd $n) (Dog $nd))
(BarksAt $d $nd))

No real numbers are intege-s.
(IF (RealNumber $x) (NOT (In'teger $x)))

Horses who hate dogs like ice cream.
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21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
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(I¥ (AND (Horse $h) (Hates $h Dogs))
(Likes $h IceCrean))
Giraffes have longer necks than Dobbin.
(IF (Giraffe $g) (Longer (NeckOf $g) (NeckOf Dobdizn)))
An-An is the only male panda in London.

(IF (AND (Nale $x) (Panda $x) (In $x London))
(= $x An-An))

Zero is an integer.

(Integer 0)
The fractional part of an integer is sero.

(IF (Integer $x) (FractionalPart $x 0))
The product of two real numbers is a real aumber.

(IF (AND (RealNuzber 3x) (RealNumber $y) (s $x $y $2))
(Realllunber $2))

The product of a positive integer and its inverse is unity.

(IF (AND (Integer $x) (> $x 0) (Quotient 1 $x $inv))
(s $x $inv 1))

Zero is an additive identity.
(+ $x O $x)
The product of two real numbers is never an imaginary number,

(I? (AXD (Reallumber $x) (RealNumber $y) (= $x $y $z))
(NOT (Imaginary $zj))

All numbers are either real cr imaginary or both.
(IF (Number $x) (OR (RealNumber $x) (Imaginary $x)))
All Englishmen, Scotsmen and Welshmen are British.

(IF (AND (EnglishPerson $m) (ScotsPerson $m) (VelshPerson $m))
(BritishPerson $m))
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§A.2 Answers to problems from chapter 3

In the following answers we will rename variables in those cases where it is necessary as $1, $2 etc.,
corresponding to the variables in the second proposition in left to right order of appearance.
1. (p $a) and ($r x).
(($r . p) ($a . x))
2. (p $a) and ($a q).
(($a . q) (31 . p))
3. (p $a ¢) and (p $y).
No unifier possible — different numbers of arguments.
4. (q (£ $c)) and (q $4).
(($a . (£ $2)))
5. (r (g $¢)) and (r $c).
(31 . (g $c)))
6. (r $x (b $x)) and (r $b $b).
No possible unifier — infinite substitution process.
(p $a (g $a) (h $a)) and (p (g $b) (g . $c) ($d . $¢)).
(($a . (g $b)) (Sc . ((g $b))) ($a . r))
8. (q $a) and ($r . $s).
(($x . a) ($s . ($a)))
9. (r $b . $b) and (r $c a).
(($5 . (a)) ($c . (a)))

N
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§A.3 Answers to problems from chapter §

1. Tictactoe solution.

;Strategy rules - last has pracedezce because of reverse search order

(IF (AND (Square $move) (unimown (On $anyside $move)))
(BestMove $0X $nove))

(IF (AND (OppositeSide $0X $opponent) (Immediate¥in $opponent $move))
(BestMove $0X $move))

(IF (ImmediateWin $0X $move) (BestNove $0X $move))

;Rules for deciding vhen an irmediate win is available

(IF (AND (VinLine $A 3B $C)
(On $0X $A)
(0 $0X $B)
(unknowa (Ca $X $C)))
(Immediate¥in $0X $C))
(IF (AND (¥WinLine $A $B $C)
(0n $0X $A)
(0n $0X $C)
(unknown (0n $X $B)))
(Inmediate¥in $0X $B))
(IF (AND (Winline $A $B $C)
(Ca $0X $C)
(0n $0X $B)
(unknown (0n $X $A)))
(ImmediateWin $0X $A))

{OppositeSide 0 X)
(OppositeSide X 0)

iSquares are listed in this order so the system will
ipick the generally better squares when it has no other clue.

(Square 2)
(Square 4)
(Square 6)
(Square 8)
(Square 1)
(Square 3)
(Squaze 7)
(Square 9)
(Square 5)

(¥iolina 1 2 3)
(vinline 1 5 9)
(¥inline 1 4 7)




(¥inline 7 § 3)
(VinLine 4 5 6)
(Winlize 7 8 9)
(¥inLina'2 § 8)
(VinLline 3 6 9)
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2. Chess solution.

This problem is not conceptually dificult but is good practice for organizing a large, complex
set of rules. It is important to think carefully about what predicates to define so that each has a
clear meaning to you and also is a aseful building block for the expression of the higher level rules.

..........................................

ll'l..D!lllllll..".l..llllll.l.llllll.ll.'..‘l.l'l.l.ll.l.l.ll.ll

; The folloving rules dafine the LegalNove predicate which tests ;
or generates legal moves in chess. The argunents of LegalNove
are as follows:

Sbw - The color of the side whose turn it is to move.
Values are Black and White.

$col,$row - The column and row coords of the origin square.
VYhite’s QR1 is designated 1,1.

$newcol ,$newrov - The coords of the destination square.

;. $flag - Indicates the move class:

: . 0 is a normal move

H P is an en passant capture

C is a castling =move. )
N/B/R/Q 1- the new picco for a queening move

L]
-------------------------------- e ovessscsnavrecensse
L

¢ ®s me ®me wa e We ®s W ®e Be we ws

Condition for a normal move to be legal (king moves done separately):
not already in check, and no discovered check

(¥ (AND (Unknown (InCheck $bw))
(Nove $bw $col $rovw $newcol $newrow)
(On $bw $piece $col $row)
(Unknown (= $piece K))
(Unprovable (DisceveredCheck $bw $col $row $newcol $zewrow)))
(Legaldove $bw $col $row $newcol $nevrow 0))

;I castling is possible it’s legal

(IF (CastlingMove $bw $side)
(LegalNove $bw Castles $side 0 0 C))

;Condition for a king move to be safe

(IF (AND (On $bw K $col $row)
(Move $bw $col $row $newcol $newrow)
(Opponent $bw $wb)
(Unprovable (Attacking $wb $newcol $newrow))
(- $nevcol $col $cv)
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(- $nevrov $rovw $rv)
(Unprovable
(AND (AttacksAlong $ub $piece $pcol $prow $col $row $cv $rv)
(MultiPiece $piece))))
(Legaldove $bw $col $row $newcol $newrow 0))

:Condition for a movs to get us out of check

i (other than a king move, which is tested for safety already)

i This can only work if there is only one checking piece, which is
; on $pcol,$prov .

(IF (AND (InCheck $bw)
(Opponent $bw $udb)
(0n $bw K $kcol $krow)
(SETOF ($pc $pr)
(Attacks $vb $p $pc $pr $kcol $krow)
(($pcol $prow)))
(EscapesCheck $pcol $prow $bw $col $row $newcol $newrow $tlag))
(LegalMove $bw $col $row $newcol $newrow $£1ag))

iCondition for a pawn move to be legal

(IF (AND (Unknown (InCheck $bw))
(PavnNove $be $col $rov $newcol $newrow $qpiece)
(Unprovable (DiscoveredCheck $bw $col $row $mewcol $newrow)))
(LegalMove $bw $col $row $nevcol $nevrow $qpiecs))

:Condition for an en passant move to be legal

(IF (AND (Unknown (InCheck $bw))
(EoPassantNove $bw $col $row $newcol $newrow P)
(Unprovable (DiscoveredCheck $bw $col $row $newcol $newrow))
(Unprovable (Pinned $bw $newcol $row $pcol $prow)))
(Legallove $bw $col $row $nevcol $newrow P))

eeosevvesassvan 42000000 0rrev et ssnnsssenese [ R R R R R T
llll'l".ll..l'l..ll..l.ll.'ll.lllll'llllll.l.l.l'."l..l..'lll'll..

: Conditions for various types of moves to escape check, either by ;
i taking the checking piece or by interposing :

. [ R . R T 4 R I R R R R R R N I T Y T
lll...lll.l'.l.l'lll..l.ll'.ll".lll.".l'.l...l.llD‘l'lllll'llll"l

(IF (AND (PawnMove $bw $col $row $col $newrow $qpiece)
(0n $bv K $kcol $krow)
(Between $col $newrow $kcol $krow $pcol $prow)
(Unprovable (DiscoveredCheck $bw $col $row $col $newrow)))
(EscapesCheck $pcol $prow $bw $col $row $col $newrow $1£1ag))

.(IF (AND (PawnMove $bw $col $row $pcol $prow $qpiece)

(Uoprovable (DiscoveredCheck $bw $col $row $col $newrow)))
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(EacapesCheck $pcol $prow $bw $col $row $pcol $prow $qpiece))

(IF (AND (EnPassantMove $bw $col $prow $pcol $newrow P)
(Unprovable (DiscoveredCheck $bw $col $prov $pcol $newrow))
(Unprovable (Pinned $bw $pcol $prov $pinc $pirr)))
(EscapesCheck $pcol $prow $bw $col $prow $pcol $newrow P))

(IF (AND (EnPassantMove $bw $col $row $newcol $newrow P)
(On $bw X $kcol $krow)
(Betwaen $newcol $newrow $kcol $irow $pcol $prow)
(Unprovable (DiscoveredCheck $bw $col $row $newcol $newrow)))
(EscapesCheck $pcol $prov $bw $col $rov $newcol $nevrow P))

(IF (AND (Nove $bw $col $row $newcol $newrow)
(UJKNOWN (On $bw K $col $row))
(Uoprovable (DiscoveredCheck $bw $col $row $newcol $newrow))
(On $bw K $kcol $krow)
(OR (Between $newcol $newrow $kcol $krow $pcol $prow)
(AND (= $newcol $pcol) (= $newrow $prow))))
(EscapesCheck $pcol $prow $bw $col $row $newcol $newrow 0))

Conditions for legal cnltling unmoved king and rook, not in check,
: no intervening piesces, no intervening checks.

. ae sess e
O'l.llll'I"..l'.l.Illl.l'llll.'.ll.'l.lll‘!llll!l.’ll.’l..lllllll'lll'

(IF (AND (UnmovedK $bw)

(CastlingSide $side)

(Unknown (InCheck $bw))

(UnmovedR $bw $side)

(Opponent $bw $wb)

(Unprovable (AND (CastlingNoveSquare $bw $side $col $row)
(On $anyside $anypiece $col $row)))

(Unprovable (AND (CastlingCheckSquare $bw $side $col $row)
(Attacking $ub $col $row))))

(CastlingMove $bw $side))

-------------------------------------------

Conditions for pawn moves other than en passant ;

-
[

9080660080 0000000000000CLIOGILES eesess e
L] l..lllll.ll)llI.ll.l.ll.ll‘.l.l...'lllllll.lllll

(IF (AND (On $bw P $col $row)
(Direction $bw $oneforvard)
(Opponent $bw $wb)
(PawnRank $wb $qrank)
(OR (AND (= $col $newcol)
(+ $rov $oneforvard $nextrow)
(Unknown (Cn $anyside $anypiece $col $nextrow))

¢ e e e e,
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(OR (= $nextrow $newrow)
(AND (PawnRanl: $bw $row)
(+ $nextrow $oneforvard $newrow)
(Unknown

(On $anyside2 $anypiece2 $col $newrow)))))

(AND (Attacks $bw P $col $row $newcol $newrow)
(0n $wb $anypiece3 $newcol $newrow)))
(OR (AND (= $row $qrank)
(QueeningPiece $qpiece))
(AND (Unknown (= $row $qrank))
(= $qpiece 0))))
(PawnMove $bw $col $rovw $newcol $newrow $qpiece))

2e v s sscsssennre se0s0ees ces v e teesanvane sneesceves s
l"lll‘."l.l.ll‘llDl.'..l.ll'l..l.lll"lll.’lll'lll.

: Condition for a normal move other than pawn moves ;

(IF (AND (On $bw $piece $ci $r1) (Unknown (= $piece P))
(Attacks $bw 3piece $ci $r1 $c2 $r2)
(Unknown (On $bw $anypiece $c2 $r2)))
(Nove $bw $ci $r1 $c2 $r2))

e we
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-e
-e
-
-e
-e
..
-
-
-e
-e
..
we

................................

(IF (AND (EnPassantRank $bw $row)
(0n $bw $col $row)
(PreviousMove $ub $pcol $prow $pcol $row 0)
(PavnRank $wb $prow)
(On $wb P $pcol $row)
(Attacks $bw P $col $rov $pcol $newrow))
(EnPassantMove $bw $col $row $newcol $newrow P))

: Rules for determining discovered checks ;

------------------------------------------

(IF (AND (Pinned $bw $col $row $pcol $prov)
(- $newcol $col $cvi)
(- $newrow $row $rvi)
(- $pcol $col $cv2)
(- $prow $row $rv2)
(Unprovable (Parallel $cvi $rvi $cv2 $rv2)))
(DiscoveredCheck $bw $col $row $mewcol $newrow)®

iCondition for a piece to be ‘pinned’, i.e. unremovable by $bw

;[pcol.prow]>>>>>>>>>>[col.rov][ncxtcol.ncxtrov]>>>>>>>>>>[kcol.krow]

L}
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(IF (AND (On $bw K $kcol $krow)
(UnitVector $col $row $kcol S$krow $cv $rv)
(+ $col $cv $nmextcol) (+ $row $rv $nextrow)
(Route $nextcol $nextrow $kcol $krow $cv $xv)
(Opponent $bv $ud)
(AttacksAlong $wb $piece $pcol $prow $col $row $cv $rv)
(MultiPiece $picce))

(Pinned $bw $col $row $pcol $prow))

attacking squares ;

sevesssseses s eeerss0sssene
ll'll.l.lllll...lll.l..lll!l!ll.

Rules to determine when pieces are

99605520095 INNNGILEELIENSIOERNOERIRSSERETY ®Sessecssocecssesescone
.Ol'Il.l’.lI!lllD'lllll'lllllll.lllll!....l.'llll..l.!ll

iDefinitions of different specificities of attacks

(IF (AttacksAlong $bw $p $ci $r1 $c2 $x2 $cv $rv)
(Attacks $bw $p $ci $r1 $c2 $r2))

(IF (Attacks $bw $p $ci $ri $c2 $r2)
(Attacking $bw $c2 $r2))

:Condition for attacking a ’neighbouring’ square with vector $cv $rv

(IF (AND (On $bw $piece $col $row)
(NoveVector $piece $bw $cv $xv)
(NextTo $col $row $cv $rv $newcol $newrow)) |
(AttacksDirectly $bw $piece $col $row $newcol $newrow $cv $rv))

;Base case for attacking a 'distant’ square

(IF (AND (AttackasDirectly $bw $piece $col $row $newcol $newrow $cv $rv)
(Unknown (MultiPiece $piece)))
(AttacksAlong $bw $piece $col $row $newcol $newrow $cv $rv))

iCondition for a piece to attack a 'distant’ square with vector y:v $rv

(IF (AND (On $bw $piece $col $xow)
(NultiPiece $piece)
(AttacksDirectly $bw $piece $col $row $col2 Srovz $cv $rv)
(Route $col2 $row2 $newcol $newrow $cv $rv))
(AttacksAlong $bw $piece $col $row $newcol $newrcw $cv $rv))

ooooooooooooooooooooooooooooo seseecscssrrenens
.l.l'.lDlDl0l..lll.lll'll.llllllll.'lllll.”il'.

Route sces if there is a clear path from one ;
lquaro to another along a given vcctor ;

-----------------------------------------

(Route $col $row $col $rovw $cv $xv))
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(IF (AND (Unknown (On $anysids $anypiece $col $row))
(Route $col2 $row2 $nawcol $newrow $cv $rv))
(Route $col $row $newcol $newrow $cv $rv))

e e s e v 40 e e st s e s N st se e s
ll.llllllib..l'lll'lllllllll.lll'l.l.ll."'l.

i Predicates for handling vector arithmetic ;

*S3eecsstanvsenen I S R S R R R R R RS
llll.l.lllll.lllllll.ll.ll'.lllll'l.ll'llll'.

i NextTo gives the next square to $col $row aloms vector $cv $rv

(IF (AND
(+ $col $cv $newcol)
(< $newcol 9) (> $newcol 0)
(+ $rov $xv $newrow)
(< $newrow 9) (> $newrov 0))
(NextTo $col $rov $cv $rv $nevcol $newrow))

iDefinition of parallel vectcrs

(IF (IS (- (* $cvi $1v2) (e $cv2 $zvi)) 0)
(Parallel $cvi $rvi $cv2 $xv2))

:UnitVector finds the appropriate move vector to get between two squares

(IF (AND (- $col2 $coll $mev)
(- $row2 $row! $nrv)
(Sign $mcv $cv)
(Sign $nrv $zv))
(UnitVector $coll $rowi $col2 $row2 $cv $rv))

(IF (> $x 0) (Sign $x 1))
(IF (< $x 0) (Sign $x -1))
(IF (= $x 0) (Sign $x 0))

;Between sees if a square x is between two others ¥.z

(IF (AND (- $zc $xc $cvi)
(- $zr $xr $rvi)
(- $yc $xc $cv2)
(- $yr $xr $xv2)
(Parallel $cvi $rvi $cv2 $rv2)
(IS (+ (* $cvi $cv2) (* $rvi $rv2)) $dotprod)
(< $dotpred 0))

(Between $xc $xr $yc $yr $zc $zr))

: Data tables for castling, move vectors, plece classes ;

-------------------- IR R N S N R R N R R T T N
l..l.llI.lllllll'll'.l!ll'l..lllll.l.ll..ll.llll'lllbl.ll
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(CastlingSide Kings-side)

(CastlingSide Queens-sida)

(Opponeat ¥hite Black)

(Opponent Black ¥hite)
(CastlingCheckSquare Vhite Kings-side 7 1)
(CastlingCheckSquare White Kings-side 6 1)
(CastlingCheckSquare ¥hite Quoens-side 3 1)
(CastlingCheckSquare WYhite Queens-side 4 1)
(CastlingCheckSquare Black Kings-side 7 8)
(CastlingCheckSquare Black Kings-side 6 8)
(CastlingCheckSquare Black Queens-side 3 3)
(CastlingCheckSquare Black Queens-side 4 8)
(CastlingMoveSquare Vhite Kings-side 7 1)
(CastlinrgMoveSquare Yhite Kings-side 6 1)
(CastlingMoveSquare White Queens-side 2 1)
(CastiingMoveSquare ¥hite Queens-side 3 1)
(CastlingMoveSquare Yhite Queens-side 4 1)
(CastlingMoveSquare Black Xings-side 7 8)
(CastlingMoveSquare Black Kings-side 6 8)
(CastlingMoveSquare Black Queens-side 2 8)
(CastlingMoveSquare Black Queens-side 3 8)
(CastlingMoveSquare Black Queens-side 4 8)
(Direction White 1)

(Direction Black -1)

(PavnRank Vhite 2)

(Pa:mRank Black 7)

(EnPassantRank White 5)

(EnPassantRank Black 4)

(QueeningPiece N)

(QueeningPiece B)

{QueeningPiece R)

(QueeningPiece Q)

(NultiPiece B)

(NuitiPiece R)

(NultiPiece Q)

(HoveVector P White 1 1)

(NoveVector P White -1 1)

(MoveVector P Black 1 -1)

(NoveVector P Black -1 -1)

(NoveVector N $anyside 1 2)

(NoveVector N $anyside 2 1)

(MoveVector N $anyside 2 -1)

(NoveVector N $anyside 1 -2)

(MoveVector N $anyside -1 -2)

(MoveVector N $anyside -2 -1)

(NoveVector N $anyside -2 1)

(NoveVector N $anyside -1 2)




(MoveVector B $anyside
(NoveVector B $anyside
(MoveVector B $anyside
(NoveVector B $anyside
(MoveVector R $anyside
{NoveVector R $anyside
(MoveVector R $anyside
(NoveVector R $anyside
(NoveVector Q $anyside
(HoveVector Q $anyside
(NoveVector Q $anyside
(NoveVector Q $anyside
(MoveVector Q $anyside
{MoveVector Q@ $anyside
(NoveVector § $anyside
(MoveVector Q $anyside
(MoveVector K $anyside
(MoveVector K $anyside
(MoveVector K $anyside
(NoveVector X $anyside
(MoveVector K $anyside
(MoveVector K $anyside
(MoveVector K $anyside
(NoveVector K $anyside

Appendix A:

11)
1 -1)
-1 -1)
-1 1)
1 0)
01)
-1 0)
0 -1)
11)
1-1)
-1 -1)
-11)
10)
01)
-1 0)
0 -1)
11)
1-1)
-1 -1)
-11)
10)
01)
-1 0)
0 -1)
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3. Geometry solution.

The ontology for geometry is fairly well-known — points, lines, angles and circles cover most
things. Points are identified by constant symbols just as in real life. Lines and angles can be
" represented by terms with function symbols Line and Angle; for example, the line segment AE wil
be called (Line A B). Circles could be represented by a term witk function symbol Circle with the
points on the circle as argumentz, but for our purposes, as is common in geometry, this won’t be
needed. It is important to note that the angle terms refer to the particular piece of angle subtended
by the particular three points, s0 our geometrical theorems will not state that angles are equal, but
that their sizes are equal; similarly, lines are not equal, but have equal length.

A real difficulty arises wich the use of an angle described by a term such as (Aogle A B C):
how is MRS to know that it is the same as (Angle C B A)? The same problem arises with (Line
A B) and (Line B A). Basically whenever we want to use a term such as (Angle $a $b $c) ina
rule, we are obliged to write the same r le again but with the points in reverse order, in case the
facts we have about that angle happen to be expressed that way. It would be nice if we could get
the unification routine to treat these as unifiable, then we could write rules and describe problem
instances as if there were no problem at all, but that is, as they say, beyond the scope of this book.
There is, however, a way of achievirg the same effect. What we want to have is a term that will
unify with a given angle whichever way round it is written; to achieve this we use a constructor
predicate MakeAngle:

(MakeAngle $a $b $c (Angle $a $b $c))
(NakeAngle $a $b $c (Angle $c $b $a))

Wherever we want to use (Angle $a $b $¢) we now say
(MakeAngle $a $b $c $abe)

and use $abc instead. The cail to NakeAngle succeeds twice if necessary so we can treat $abe as if
it were an ‘unordered’ representation of the angle that unifies with either of the ordered versions.
Let us see how this works in a simple case, the rule for calculating the third angle of a triangle when
the other two are given. The original rule, which is inadequate, is

(IF (AND (DegreeValue (Angle $b $a $c) $bacval)
(DegreeValue (Angle $u $c $b) $acbval)
(- 180 $bacval $acbval $abcval))
(DegreaValue (Angle $a $b $¢) $abcval)).

The first stab at fixing it up is

(IF (AND (MakeAngle $a $b $c $abe)
(MakeAngle $b $a $c¢ $bac)
(NakeAngle $a 3c $b $acd)
(DegreeValue $baz $bacval)
(DegreeValue $acd $acbval)

(- 180 $bacval $acbval $abecval))
(DegreeValue $abc $abeval))

but this rule is actually too general, since we will be normally trying to find some fixed angle $abe
s0 we can dispense with that variable and its corresponding MakeAngle and use (Angle $a $b $c)
in the conclusion of the rule, a it appears in the body of the code below. In general, facts such
as actual angle values in the database will have a fixed-order representation (we don’t want to give
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each fact for a problem instance twice), #0 to achieve generality the premises of rules, which will
be unified with facts in the database, should use the MakeAngle method, whilst the conclusions can
be in fixed format. If we had the multiple representations of the problem instance we could use
MakeAngle for angles in the conclusions of rules and fixed format for those in the premises. The key
is to be consistent.

The following rules contain the geometrical theorems that are useful for this proof:

iThe zngle between a tangent and a radius to the point of contant is 90

(IF (AND (NakeLine $a $b $ab)
(Tangent $adb $circle)
(Center $circle $0)
(PointOnCircle $b $circle))
(DegreeValue (Angle $a $b $o) 90))

:The angles in a triangle add up to 180 (for deducing 3rd angle value)

(IF (AND (MakeAngle $b $a $c $bac)
(NakeAngle $a $c $b $acd)
(DegreeValue $bac $bacval)
(DegreeValue $ach $acbval)

(- 180 $bacval $acbval $abcval))
(DegreeValue (Angie $a $b $c) $abeval))

iAngle at the centre is twice the angle at the circumference

(IF (AND (PointOnCircle $a $circle)
(PointOnCircle $b $circle)
(Unknown (= $a $b)) ¢
(PointOnCircle $¢ $circle)
(Unknown (= $a $c))

(Unknown (= $c $b))

(Center $circle $0)

(MakeAngle $a $o $c $aoc)

(DegreeValue $aoc $aoccval)

(// $aocval 2 $abcval))
{DegreeValue (Angle $1 $b $c) $abeval))

iThe angies at the base of an isosceles triangle are equal

(IF (AND (MakeAngle $b $a $c $bac)
(MakeLine $b $a $ba)
(MakeLine $b $c $bc)
(Equallength $ba $bc)
(MakeAngle $a $c $b $ach)
(DegreeValue $ach $val))

(DegreeValue $bac $val))
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+A1l radii of a given circle have equal length

(IF (AND (PoixtOnCircle $a $cixzcle)
(PointOnCircle $b $circle)
(Unknoun (= $a $b))
(Center $circle $0))
(Equallength (Line $o $2) (Line $o $b)))

iAngles standing on the same segment are equal

(IF (AND (PointOnCizcle $a $circle)
(PointOnCircle $b $circle)
(Unknown (= $a $b))
(PointOniircle $c $circle)
(Unknown (= $a $¢))
(Unknown (= $c $b))
(PointOnCircle $d $circle)
(Unknown (= $a $4d))
(Unknown (= $b $d))
(Unkmown (= $c $d))
(MakeAngle $a $d $c $adc)
(DegreeValue $adc $val))

(DegreeValue (Angle $a $b $c) $val))

:If P is on AB then <ABC = <PB(C

(IF (AND (MakeLine $a $b $adb)
(PointOnLine $p $ab)
(MakeAngle $a $b $c $abc)
(DegreeValue $abec 3val))
(DegreeValue (Angle $p $b $c) $val))

;sIf A is on PB then <ABC = <PBC

(IF (AND (iakelLine $p $b $pb)
(PointOnLine $a $pb)
(MakeAngle $a $b $c $abc)
(DegreeValue $abc $val))
(DegreeValue (Angle $p $b $c) $val))

;Angle ard line constructors

(MakeAngle $x $y $z (Angle $x $y $z))
(MakeAngle $z $y $x (Angle $x Sy $z))
(NakeLine $x $y (Line $x $y))

7
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(MakeLine $y $x (Line $x $y))

The following is the description of the problem instance. These facts should probably be asserted
with forward chaining turned on.

(PointOnCircle B Q)
(PointOnCircle C Q)

(PointOnCircle D Q) ‘ .
(FointOnCircle E §)

(PointOnCircle F Q)

(Center Q 0)

(Tangent (Line A B) Q)

(PointOnLine F (Line A 0))

(PointOnLine 0 (Line F D))

(PointOnl.ine 0 (Line B E))

(DegreeValue (Angle 0 A B) 20)
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§B.1 Introduction

There are three different machines upon which this MRS will run. They are DEC-20’s running
Maclisp, VAXen running Frans under Berkeley Unix, and Symbolics LISP Machine LM-2/3600.
Each machine requirea a slightly different set of miscellanous files and zLghe changes in the file
extensions. The package you received has lisp file extensions .1sp (DEC-20), .1 (VAX) or .1lisp
(LM-2/3600). In the remainder of the document the lisp files will be referred to as <file>.lap; the
reader should translate this into the appropriate extension for their machine.

Besides the 1sp, test, load, dat, mras, demo and doc files which are used by all the systems,
there are several files and file types which are unique to each individual machine. Fach is explained
in the appropriate section.

Extension Machine
.CTL DEC-20
VAX VAX
Makefile VAX
IM2 LM-2

§B.2 How to get MRS running

B.2.1 Maclisp version on the DEC-20.

Dec-20 tapes are written using the ANSI tape program. The files from the tape should be read
into the directory in which they will reside on your machine. We maintain the les in the directory
<mrs.mac.cur>. There are several locations where the directory name is defined. THESE MUST
BE UPDATED TO YOUR DIRECTORY NAME. The locations are in all the CTL files and in
MRS.LOAD.

There is an automatic compilation program which will compile all the required lisp programs.
It can be run in batch by "SUBMIT COMPMRS.CTL". A summary of the results will be appended to
the file compmrs.log. If you need to compile individual files, then make sure you are cunnect to the
directory and then run complr.

To make an executable v ssion of MRS, run in batch "SUBMIT MAKMRS.CTL". The resulting
executable file will reside .2 mrs.exe. Again a log of the results of the batch run is appended to
MAKMRS.CTL.

You are now .eady to start using MRS.
(The fil prmrs.ctl is used to print out the appropriate files on our laser printer . This is not

necessary but is provided as a convenience)

B.2.2 Franz version on the VAX,

Frans-MRS tapes usually are written by the UNIX program tar. After you connect to the
directcry where you want to put the sources, restore them with the command tar =xp. (The
directory does not have to be dedicated to MRS but this is recommended.)

There are several locations where the directory name is defined. THESE MUST BE UPDATED
TO YOUR DIRECTORY NAME. The locations are in mrs.load and Makefile. The current
reference should be to /bpp/mrs/cur and should be changed to the directory name.
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The file "Makefile" sets the "make® variables LISP (which points to the directory that contains
®1isp” and "1iszt”), DESTDIR (which points to the directory where the MRS executable file should
be linked to), and LIBDIR (which points to the directory where the library iiles should be linked to).
Modify these files for your site.

The fle "Makefile" will be used by "make® to build an MRS for you. You must modify the
install command so that it sets up the links correctly. (If you don’t want the library files to be
linked to another directory, this is the place to change.) If you are just interested in a sysout, the
command *make xmrs" should put an executable version of MRS into the file "xmrs®.

“make install® will create a xmrs in this directory, and also put in a I'nk betweer the DEST-
DIR/ars and the xmrs created in this directory. Only the executable file is linked.

You zre now ready to start using MRS.
There are three files with the extension .VAX.

The getfranz.VAXis used to FTP the MRS from our DEC-20 to our VAX. If you have multiple
sites running MRS this program can be used. It will have to be altered to your protocols. Notice
the name changing from DEC-20 to YAX.

Tle sendfranz.VAX is used to PTP the MRS from our VAX to our DEC-20. If you kave multiple
sites running MRS this program can be used. It will have to be altered to your protocols. Notice
the name changing from VAX to DEC-20. (getfranz and sendfranz are just opposite directions)

The sendlispm.VAX is used to FTP the code from our VAX to the Symbolics machines. Notice
the name changing from VAX to LISPM.

The technique for using getfranz and sendfranz is

cat getfranz.VAX | fip

the technique for using sendlispnm is:

cat sendlispm.VAX | ftp

B.2.8 ZetaLisp version on the LM-2/3€00.

The lispm-MKS tapes are written on Symbolics streamer tapes. The tape was made using the
LMFS dumper and was a complete dump of the MRS directory. The tape can be loaded using the
reload/retrieve command on the directory you intend to install MRS. The tape name is MRS-7.1
(or a later version number). Lisp files on the Symbolics machines should end with extension .LISP.

There is one locations where the directory name is defined in the MRS files. THIS MUST BE
UPDATED TO YOUR DIRECTORY NAME. The location is in nrs.lcad. The current reference
should be to >mrs>cur> and should be changed to the directory name.

To load MRS into the current lisp environment do the following:

(load ’">mrs>cur>mrs.load)

This should compile the appropriate lisp functions and load them in. There will probably be a
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lot of warning messages in the compilation. These on the most part can be ignored. It is advised
that MRS be lcaded into a clean cold boot. Otherwise names may be redefined.

§B.3 Adding Files to MRS - for system maintainers

If you need to add a new set of source file to MRS, there are several files that are affected and
need to be changed. They are MRS.LOAD , Nakefile, COMPMRS.CTL, PRMRS.CT1, COPYLISPM.VAX,
GETFRANZ.VAX, SENOFRANZ.VAX, and SENDLISPN.VAX. The files interface.lsp and test.lsp are
affected if new demo packages are added or test files respectively.

In NRS.LOAD two references to the lisp source filename (excluding the lisp extension) need to be
added .

In Nakefile the source filename (with .1 extension) needs to be udded to the make variable
SOURCES, the object filename (with .0 extension) needs to be added to the make variable 0BJECTS,
the test filename (with .test extension) needs to be added to the make variable TESTAUX, and the
demo filename (with .demo extension) needs to be added to the make variable DEMOAUX.

In files COMPMRS.CTL and PRMRS.CTL need to add the source filename (with .1sp extension).

In files COPYLISPN.VAX, GETFRANZ.VAX, SENDFRANZ.VAX, and SENDLISPN.VAX need to add the
source filename (with extension), the test filename (with extension .test) if one exists, and the
documentation filename (with extension .doc) if one exists.

If there are any demo files, they need to be added to the list demolist in the source file
INTERFACE.LSP.

If there are any test files, they need to be added to the function finderrors in the source file
TEST.LSP.

§B.4 Testing MRS installation

There is a testing program for verifying the system. Once MRS has been installed call (£ inderrors);
it should return a value of 0 indicating that there were no e;rors encountered. If there are errors in
the MRS function being tested, the result and the expected result are indicated.

If you plan on adding test files you are required to follow a specific format. The format consists
of an MRS (or LISP) command foliowed by the expected answer. If the answer is irrelevant a * can
be used. For examples, look at the <file>.test source files.

§B.5 The Share Subdirectory

We are also maintaining a subdirectory called share which is composed of user written code that
may be useful to other sites. These procedures are not currently considered a core part of MRS and
hence are not in the main directory. All files maintained in this subdirectory should have a *.doc
file describing the use and functions in the file and ».dict file consisting of a dictionary entry for
each of the user accessable functions/procedures/relations.
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§B.6 Required Files

This is a list of the required files that should be on your tapc. There may be additional files which

can be ignored.
LISP fles

ask.lsp
base.lsp
batch.lsp
be.lsp
cnf.lsp
common.lsp
compat.lsp
erfrepn.lsp
execute.lsp
fc.lsp
interface.lsp
macros.lsp
match.lsp
meta.lsp
mla.lsp
plist.1lsp
proprep.lsp
Tepn.lsp
Tes.lsp
set.lsp
test.lsp
timer.lsp
tn.1lsp
top.1lsp
toplevel.lsp
tr.1lsp
trbe.lsp
trexec.lsp
trfc.lsp

tut-concpt.lsp

tut-dict.lsp
tut-exer.lsp
tut-gen.lsp

tut-main.lsp

tut~-synchk.lsp
tut-topics.lsp

version.lsp

Demo files

blocks.demo
d74.demo
kinship.demo
ovarview.demo
primate.demo
tax.demo

Test files

base.test
be.test
exrfrepn.test
execute.test
£1.test
fc.test
meta.test
mla.test
proprep.test
Tepn.test
Tes.test
set . test
tr.test
trbc.test
tric.test

MRS files used by demo, test

blocks.nrs
11.nrs
kinship.nrs
neta.mrs
mrs.mrs
msai.mrs
primate.mrs
s.nrs
sets.mrs
syntax.mrs
tax.nrs

VAX files

Nakefile
ReadMe
copylispm.vax
getfranz.vax
sendfranz.vax
sendlispm.vax

DEC-20 files

cénpmzl.ctl
nakmrs.ctl
praors.ctl
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(¢ <a;>...<an > <2p41>)
means that <an4y > represents the product of the values represented

by <a; >...<a, >. See 1q.

(+ <a; >...<ay <aps1 >)
means that <an41 > represents the sum of the values represented by

<ay >...<an >. See £q.

(- <a> <b> <c>)
means that <c> represents the difference between <a> and <b>. See

1q.

(// <a> <b> <c>)
means that <c> represents the quotient of <a> and <b>. See 1q.

(< <a> <b>)
means that <a> is less than <b>. See rq.

(<= <a> <b>)
means that <a> is less than or equal to <b>. See zq.

(= <a> <b>)
means that the terms <a> and <b> are synonymous, i.e. they refer to

the same object. See lookup-=.

(> <a> <b>)
means that <a> is greater than <b>. See rq.

(>= <a> <b>)
means that <a> is greater than or equal to <b>. See rq.

(achieve <p>)

makes the proposition <p> true. Achieve is an abstract operator imple-
mented using kb and toachieve. (achisve <p>) and (achieve (not
<p>)) now work when the proposition <p> begins with value, prop-
exrty, Tepn, threpn, includes, indb, better, or primitive. So, up to
a point, does (achieve (if <q> <p>)), which calls trueps on <q>
and then ACHIEVEs <p> with the resulting bindings plugged in. Note
that propositions stashed in theories other than the currently writeable
one are not affected. (e.g. (achieve (repn <p> <r>)) has the re-
sult that all propositions matching <p> will henceforth be stashed,
lockuped, and 50 on using representation <r>. This includes re-storing
currently accessible propositions that were stored using pr-stash or in
cnf. repn works on all theories that are active when it is achieved.
(achieve (threpn <p> <r> <th>))) does the same thing as with
repn, but affecting only theory <th>. It is the users responsibility to en-
sure that there are never two or more theories active which use different
representations for the same proposition.) See kb, repn, threpn.

(achieve-if (if <p> <q>))
has the effect of calling achieve on the proposition <q> for each list
of variable bindings that makes proposition <p> true, with the relevant




achieve-not

achieve-repn

achieve-threpn

activate

activetheories

agendsz

and

applicable

arity

ask

asks

Appendix C: Dictionary of predicates and flags 83

bindings substituted into <q>. See achieve, trueps, plﬁg.

(achieve-not (mot <p>))

is an abstract opevator implemented using kb and tounachieve. When
called with an argument of the form (not <p>), it is supposed to
achieve the opposite of <p>, if meaningful. See achieve, unachieve.

(achieve-repn (repn <prop> <rpn>))
uses repn-assert to switch the representation of <prop> from its old
value to <rpn>, and converts any instances of <prop> that can be
found under the old representation to the new one. See domain, repn,
repn-assert, repn-method.

(achieve-threpn (repn <prop> <rpn> <th>))
is identical to achieva-repn except that it sets the currently writable
theory to <th> temporarily while it executes. See achieve-repn, the-
ory, threpn.

(activate <t; >...<t, >)
makes the propositions in the theories <t; > ... <t, > available for
retrieval or deduction. See theory, activetheories, deactivate.

has as its value the list of currently active theories. The propositions in
these theories are available for retrieval by pr-lookup and pr-lookups.
See pr-stash, pr-unstash, pr-lookup, pr-lookups, activate, and de-
activate.

agenda is a list of applicable tasks. See applicable, scheduler.

(and <p; >...<pp >)
means that the propositions <p; > ... <p, > are all true. See assert-
and, be, by, fc.

(applicable <k>)
states that the task <k> is applicable and, therefore, executable unless
it is disqualified. See executable, disqualified, scheduler.

(arity <rel> <i>)
provides typing information, indicating that the relation (or operation)
<rel> takes <i> arguments, e.g. (arity arity 2). See domain.

(ask <p>)
calls output, prints the result, and reads the users answer. If <p> is
a ground proposition, ask tries to obtain an answer of true or false.
If <p> contains variables, ask obtains variable bindings from the user.
See output.

(asks <p>)
calls output, prints the result, and reads the users answers. If <p> is
a ground proposition, asks tries to obtain an answer of true or false.
If <p> contaius variables, asks obtains a list of binding lists from the
user. See output.
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(assert <p>)
stores the proposition <p> in the data base and performs all appropriate
forward inference. Assert is an abstract operator implemented using kb
and toassert.

(assert-and (and <p; >...<ps >))
separately asserts each of the conjuncts <p; >,..., <pa >

(ansert-1ff (iff <p> <q>))
asserts (12 <p> <q>) and (if <q> <p>).

(assumable <p>)
means that the proposition <p> can be assumed if necessary in trying
to prove a proposition. See residue, residues.

(bagof <x> <p> <s>)
means that <s> is the bag of all objecto <x> that statisfy <p>. Since
there maybe many ways of satisfying <p>, the bag <s> may contain
duplicate objects. Bagof is useful for performing extensional reasoning,
since it allows one to designate the set of all solutions to a problem. See
truep-bagof, lookup-bagof.

(batchp <x> <y>)

‘checks whether the expressions <x> and <y> can be unified by some

set of bindings for the base-level variables in the two expressions. If so,
batchp returns the corresponding binding list for the variables in <x>
but discards the bindings for the variables in <y>. If the expressions
are not unifiable, batchp returns nil. All variables in <x> are treated
as distinct from the variables in <y>, even though they have the same
name. For example, the expression (r $x b) matches (r a $x) with
result (($x . a) (t . t)). See blvarp, matchp.

(be <p>)

tries to prove the proposition <p>. If successful, it returns an appropri-
ate binding list; otherwise, it returns nil. Only base-level variables are
treated as variables by be, and any meta-level variables are treated as
constants. The inference procedure used is backward chaining, but there
are also built-in procedural attachments for many propositions (specified
via the totruep and totrueps relations). Be is implemented using the
subroutine bedisp. See bedisp, scheduler.

(bedisp <gl> <al> <jl> <ce>)
performs one backward chaining step in trying to prove the propositions
on the goal list <g1>. The binding list <al> holds bindings for the vari-
ables in <gl> obtained in preceding steps. The justification list <j1>
holds the names of any propositions used in deriving a goal list from its
super goal list. The list <ce> is a stack of supergoals and justifications
In working on a goal list (<q> . <1>), bedisp first calls trtruep to
find any procedural attachments for <q> other than be or bes, and
if successful calls that subroutine. Otherwise, it generates subgoals by
looking in the data base for propositions of the form <q> or (if <p>
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<q>). The order in which multiple bedisp tasks are executed can be
influenced via appropriate preferred propositions. bcdisp caches its
results and saves justifications as appropriate. See trtruep, totruep,
totrueps, cache, justify.

(bes <p>)

tries to prove the proposition <p>. It returns a list of all binding lists for
which it is successful. Only base-level variables are treated as variables by
bes, and any meta-level variables are treated as constants. The inference
procedure used is backward chaining, but there are also built-in proce-
dural attachments for many propositions (specified via the totruep and
totrueps relations). Bcs is implemented using the subroutine bedisp.
See bedisp and scheduler.

(blvarp <xp>)
returns a non-nil value if <xp> is a base-level variable and otherwise
returns nil. A base-variable in MRS is denoted by a dollarsign prefix
($) and is internally distinguished by the value bl. For example, $ais a
base-level variable. See varp.

(br <p>)

tries to prove the proposition <p>. If succesful, it returns a list of
assumable propositons which, when added to the data base, imply <p>.
Only base-level variables are treated as variables by bz, and any meta-
level variables are treated as constants. The inference procedure nused is
backward chaining, but there are also built-in procedural attachments for
many propositions (specified via the totruep and totrueps relations).
Br is implemented using the subroutine brdisp. See brdisp, scheduler,
and assumable.

(brdisp <gl> <al> <th> <j1> <ce>)
performs one backward chaining step in trying to find a residue for the
propositions on the goal list <gl>. The binding list <al> holds bindings
for the variables in <gl> obtained in preceding steps. The theory <th>
contains all assumptions made so far. The justification list <j1> holds
the names of any propositions used in deriving a goal list from its super
goal list. The list <ce> is a stack of supergoals and justifications. In
working on a goal list (<q> . <1>), brdisp first calls txtruep to
find any procedural attachments for <q> other than be or bes, and if
successful calls the subroutine so found. Otherwise, it generates subgoals
by looking in the data base for propositions of the form <gq> or (it
<p> <g>). It u- « trueps to discover whether q is assumable. If it is
assumable and i{ s a ground propasition after plugging in the variable
bindings returned by trueps, brdisp creates a new theory that includes
<t}. , asserts the proposition in that theory, and generates appropriate
subgoals. The asserted propositions are useful in that they make possible
consistency checking before making assumptions in subsequent steps.
The order in which muitiple brdisp tasks are executed can be influenced
via appropriate preferred propositions. Brdisp caches its results and
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brs

cazhe
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cnf

cnf-assert

cnf-unassert

computable-repn

saves justifications as appropriate. See trtruep, totruen, totrueps,
cache, justify.

(brs <p>)
tries to prove the proposition <p>. It returns a list of all assumption

‘lists for which it is successful. Only base-level variables are treated as

variables by brs, and any meta-level variables are treated as constants.
The inference procedure used is backward chaining, but there are also
built-in procedural attachments for many propositions (specified via the
totruep and totrueps relations). Brs is implemented using the subrou-
tine brdisp. See brdisp, scheduler, and assumable.

is a variable governing whether various inference methods should cache

their results. When nonNIL, those various inference methods will call
the appropriate tocache method on each cachable result. (Le., each
method will call (kb tocache <p>) for each intermediate conclusion,
<p>.) See tocache, cachebystash.

(cachebystash <p>)
stashes the value <p> into the theory named by the variable cache.
(If cache has the value T, then the current theory is used.) This
cachebystash subroutine is the default caching method. It is recom-
mended that one house these propositions in a temporary theory, and
apply empty to this theory when the cached values are no longer needed.
See cache, tocache

(characteristic <set> <fn>)

means that the lisp subroutine <fn> is the characteristic function for
the set <set>, e.g. (characteristic integers fixp). See arity,
domain.

is short for conjunctive normal form. A proposition is in conjunc.
tive form if it is written as a conjunction of disjunctions of literals,
i.e. atomic propositions or negations of atomic propositions. For ex-
ample, the proposition (and (or (not (p $x)) (q $x)) (or (r $x)
(s $x))) is in conjunctive form. This also serves as a representation.
See repn.

(cnf-assert <p>)
converts <p> into conjunctive normal form and separately asserts each
of the conjuncts. See cnf.

(cof-unassert <p>)
converts <p> into conjunctive form and separately unasserts each of the
conjuncts. See caf.

Explanation.

Many relations and functions can be readily evaluated, and so never
need to be explicitly stashed. Consider, for example, the class of arith-
metic functions and relations, such as + and >. MRS includes several
computable representations in which to encode such facts. We describe
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below various computable representations - vis., re, rq, rqdb, rqbm, red,
rebm, rqfn, fe, £q and fea. For a proposition to be represented in
one of these representation, its relation symbol must hive an associated
LISP subroutine {ALS). Each lookup subroutine associated with each
of these representations takes as input a proposition of the form (<r>
<xj > ... <xq >), and calls ALS on a list of values compated f~om
that argument list, <x; > ... <x, >. In some representations, each
argument is frst evaluated, using lookupval. Also, in scme represen.
tations the ALS takes all n arguments, while in others it is only passed
the term-part of the proposition, namely the first n~1 arguments. Note
that propositions stored in this way are not associated with any par-
ticular theory and cannct be found by PR-based routines like prfacts
or prcontents. The details of these representations are specified in
the Computable-Repn (Relation) and Computable-Repn (Function)
entries. These representations are used by the funproc and relnproc
relations,

Functions.

Here we describe those computable-repn representations which are
based on a function. We designate these function-based representations
by using the letter F in the first position of the name of the representation
- e.g. Fq is a function-based representation. Here, only the term part of
the proposition is passed to the ALS; and it is the responsibility of the
associated lookup subroutines to bind this returned value appropriately.
The same second letter is E for Eval, Q for Quote convention used for
the relation-based representations applies here as well. Hence lookup
subroutines associated with the FE representation will first lookupval
each of the arguments <x; > ... <xXp-.; >, passing the resulting list
to the ALS. The only (current) additional letter for function-based rep-
resentations is A, for arithmetic. This uses NUN-= rather than UNIFYP
when comparing the value associated with the term of the proposition
with the value of the proposition. See computable-repn, fe, fea, £q.

Relations.

This section describes those computable-repn which representations are
based on relations. These relation-based representations are designated
by using the letter R in the first position of the name of the represenation
- e.g. Erq is a relation-based representation. With one exception, the
ALS takes a spread version of the full proposition as its arguments. If the
second letter is E for eval, (as in xEbm,) the associated lookup methods
will first call lookupval on each embedded term, and pass that evaluated
argument list to the ALS. Otherwise, when it is Q for quote, those ar-
gument are directly passed to the ALS. By default, the value returned
by the ALS is an arbitrary value which, when nonNIL, tells the lookup
subroutine that this propostion is true. The third and fourth letter en-
code further refinements: When the third letter in the representations
name is B, (e.g. reB,) the ALS itself will return a binding list, which
the lookup subroutine will ri tarn. For these r7b relations, a subsequent
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{ M (e.g. xedN,) means the ALS returns a list of binding-lists, rather v
' than just one. Thi- 4th letter, M, means multiple values convention is 5 !
retained for the RQFM representation {used for multi-functions). Here Hy
the ALS takes only the term part cf the proposition, and returns a set of
values. The RQFX-LOCKUPS svbroutine then forms ti.e list of appropriate
binding-lists. Consider the Square-Reot multi-function, which returns
, both the + and - root of a number. See Computable-Repn (Concept),
- repn, re, reb, rebo, rq, rqb, rqbm, rqim.

contents (contents <t>)
: returus a list of propositions stored in thsory <t>. Only those facts
3 ; stored using the propositicnal representation {i.e., pr) will be found.

cut (cut)
is a special control form. When (cut) is executed, all other subtasks

B of the enclosing doable or uadoable task are discarded. As a resalt,
if the subtask containing the (cut) form fails, the enclosing doable or
undoable subtask will fail as well. See doable, undoable,.

§ e s BN

datum (datum <x>)
returns the symbol corresponding to the expression or proposition <x>.

deactivate (deactivate <t; > ...<t, >)
deactivates the named theories. See theory, activetheories, acti-

vate.

det (def <k> <ki1>...<kn>)

means that the task <k> is defined as (doand <ki1> ... <kn>). A
- task car have more than one definition, each one covering a different set
of inputs. For example, the following propositions define the factorial
function.

(def (fact 0 1))

(det (fact &m &n)
(- &m 1 &p)
{fact &p &q)
(* &m &q &n))

defobject (defodbject <name> <p; >...<p, >)
unasserts all propositions in pr that mention <name> and then asserts
the propositions <p; >,..., <p, >.

defrule (defrule <rule> <f;>...<2y >)
asserts the rule <zule>, and then trasserts each meta-level <f; >, af-
ter substituting the symbol associated with <rule> for ». A typical
applicatic~ is (defrule *(if (a $x) (b $x)) °'(direction * for-
ward)), which asserts (if (a $x) (b $x)) and trasserts (direc-
tion p307 forward), where p307 is the proposition symbol assigned
to (it (a $x) (b $x)). As a shorthand, the » may be omitted for
unary functions like direction. That is, * (direction forward) could
be used in place of '(direction * forward). See direction and
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trassert.

deftheory {deftheory <name> <p; > ... <pa > empties the theory <name>
and asserts propositions <py >,..., <ps > into it.

direction (direction <p> <d>)

means that the rule whose symbol is <p> should only be used in the
<d> direction, where <d> is forward, backward or both. E.g., af-
ter (tratash ’(direction p307 forward)), the rule named by p207
- say, (12 (a $x) (b $x)) - will only be used in the forward direc-
tion. That is, the ¢ subroutines will be able to use this rule in forward.
chaining (e.g. from (a 19)), but neither be nor br will have access to
this rule. This is implemented vis the direction-lookup, direction-
stash and directicn-unstash subroutines. By default, all rules can be
used in both directions. See b, br, defrule and fc.

disjoint (disjoint <x> <y>)
means that lists <x> and <y> do not have any elements in common.

(disjoint nil $y)

(disjoint $x nil)

(i (and (oot (element $e $s)) (disjoint $1 $s))
(disjoint (Se . $1) $s))

Procedural attachinent: truep-disjoint. The lisp file set must be loaded from the mrs directory.

disqualified (disqualified <k>)
states that the task <k> is disqualiied. A task that is applicable
is executable unless it is disqualified The chief way a task can get
disqualified is for there to be another applicable task that is preferred
to it. However, this fact is used when either of the switches executable
or preferred is non-nil. See applicable, scheduler.

dl1 (zepn <p> 4l1)

means that the propesition <p> should be represented in the dl repre-
sentation, i.e. the d1-<x> family of subroutines will be used to stash,
unstash, and lookup <p>. This representation is particularly useful
for representing propositions involving non-functional binary relations,
¢.g. (neighbor trance svitzerland). Note that propositions stored
in this way are not associated with any particular theory and cannot
be found by PR-bsred routines like prfacts or prcontents. See d1-
lookup, dl-stash, dl-unstash, repn.

dl-lookup (d1-lookup (<z> <a> <b>))
matches <b> against each of the values stored as the <r> property of
the lisp atom <a>, and if successful returns the resulting binding list.
Both <r> and <a> must be atoms. See dl.

dl-lockups (dl-lookups (<r> <a> <b>))
matches <b> against each of the values stored as the <r> property
of the lisp atom <a>, and returns a list of the binding lists for every
successful match. Both <r> and <a> must be atoms. See d1.
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dl-stach

dl-unstash

dnf

doable

doall

doand

domain

door

edunit

element

(dl-staah (<r> <a> <b>))
adds <b> to the list of values stored as the <r> property of the atom
<a>. Both <r> and <a> must be atoms. See dl.

(dl-unatash (<r> <a> <b>))
removes <b> from the list of values stored as the <r> property of <a>.
Both <r> and <a> must be atoms. See dl.

is short for disjunctive form. A propoasition is in disjunctive form if it is

written as a disjunction of conjunctions of literals, i.e. atomic proposi.
tions or negations of atomic propositions. For example, the proposition
(or (and a b) (and ¢ d)) is in disjunctive form. This also serves as
a representation. See repn.

(docable <k>)
designates the task of trying to execute the task <k>. The task (doable
<k>) succeeds if there is a succezsful execution of <k>. However, after
a single success, all othar subtasks of <k> are discarded, and so it can
succeed at most once. Note that as a result of the current implementa-
tion, it is not possible to interleave subtasks outside a doable task with
those inside. See succeed and cut.

(doall <x> <k> <s>)
designates the task of getting all <x> for which the task <k> succeeds.
It packages these into a list and succeeds if the resulting list unifies with
<s>.

(doand <k; > ... <k, >)

designates the task of executing tasks <k; >,..., <k4 > in sequence. If
one of the tasks can be executed in more than one way, separate subtasks
are set up for each posasibility. The doand task succeeds if there is at least
one succesful execution of all the tasks in the list. For example, (doand
(zemlist &x ((a) b (c))) (atom &x t)) succeeds because the atom
task succeeds for the execution of the zem task in which &x is bound to b.
The order in which subtasks are cxecuted can be influenced by making
appropriate preferred statements.

(domain <rel> <i> <set>)

provide typing information, indicating that the <i>th argument of the
relation (or operation) <zrel> must belong to the set <set>. E.g.
(dozain stash 1 propositions). See arity, charactistic, theo-
ries, terzs, propositions.

(door <k; > ... <k, >)
designates the task of trying to execute cne the tasks <k; >, ..., <k, >.

(edunit <x>) allows the user to edit the propositions about <x>
using Zwei. AVAILABLE ONLY IN ZETALISP.

(element <x> <s>)
means that object <x> is an element of list <a>.




elementain

enpty

exdisp

executable

executable

execute

executed

executed

executes

(element $e ($e .
(if (element $e $1) (elezent $o ($y . $1)))

Procedural attachment: truep-element. The lisp file set must be loaded from the mrs directory.

Appendix C: Dictionary of predicates and fags g1

$1))

(elezentsin <b> <s>)
means that <s> is the set of all elements in the bag <b>.

(elementsin il nil)

(if (and (not (element $e¢ $1)) (elementsin $1 $9))
(elementsin ($¢ . 8$1) (82 . $8)))

(if (and (element $e $1) (elementsin $1 $s))
(elementsin ($e . $1) $s))

Procedural attachment: truep-elementsin. The lisp file set must be loaded from the mrs directory.

(ezpty <t>)
unasserts all the facts in the theory <t>. Only those facts stored using
the propositional representation (i.e., pr) will be found.

(exdisp <1> <al>)
performs one step in the execution of the list of tasks <1>. The alist
<al> is a list of variable bindings obtained so far.

(executable <k>)

states that the task <k> is executable. If the value of the variable
executable is non-nil, scheduler uses triruep to find a task <k>
such that (executable <k>) is true. If the value of executable is
nil, it simply selects an element from the value of the variable agenda.
If the value of the variable preferred is nil, it takes the first element;
otherwise, it uses trtruep to find the best according to the preferred

relation. See scheduler.
¢

See definition of the meta-level executable

(execute <k>)

tries to execute the task <k> and, if successful, returns a binding list
for the meta-level variables in <k>. It is implemented vsing exdisp.
See task, def, doable, undoable, doall, doand, door, succeed, cut,
preferzed, tracetask.

(executed <k>)
means that the task <k> has been executed. If the value of the variable
executed is non-nil, scheduler will use trassers to record this fact of
each task as it is performed. See scheduler.

See definition of the meta-level executed.

(executes <p>)

tries to execute the task <k> and, if successful, returns a list of all
binding lists for the meta-level variables in <k>. It is implemented
using exdisp. See task, def, doable, undoable, doall, doand, door,
succeed, cut, preferzed, tracetask.
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fc

fcdisp

fe

fe-lookup

fe-lockups

fea

(tc <p>)
means that proposition <p> is assert and then all rules with <p> in the
premise are checked to see if the premise is true and if so the consequence
is asserted. Only base-level variables are treated as variables by fe,
and any meta-level variables are trxated as constants. The inference
procedure used is forward ckaining, but there are also built-in procedural
attachments for many propositions (specified via the toassert relation).
Pcis implemented using the subroutine fcdisp. See fcdisp, scheduler.

(tcdisp <p>)

performs one forward chaining step on the proposition <p>. Fedisp
first calls trtxuep to find a procedural attachments for <p> other than
fc, and if successful calls that subroutine. Otherwise, it generates other
assertions by looking in the data base for propozitions of the form (if
<p> <q>) and (if (and ... <p> ...) <q>). The order in which
muliiple fcdisp tasks are executed can be influenced via appropriate
preferred propesitions. Fcdisp caches all results and saves justifica
tions as appropriate. See trtruep, toassert, justify.

(repn <p> fe)

means that the proposition <p> should be represented in the fe rep-
resentation. That is, the fe~<x> family of subroutines will be used to
retrieve <p>. Its lookup method, fe-lookup, takes as its argument a
proposition of the form (<> <x; > ... <Xy > <xpy1 >). It first
evaluates the term (<f> <x; > ... <x, >) by applying LISP sub-
routine corresponding to the function symbol <2>, (i.e., on <f>s LISP
property,) to the list obtained by calling 1cokupval on each of the <x; >.
Fe-Lookup then unifies this value with (lookupval <xn4; >), and re-
turns the result. See computable-repn, fe-locokup, fe-lcokups, fea,
1q, funproc, repn.

(fe~lookup <p>)
is used to retrieve the proposition <p>. See fe, 1isp.

(fe-lookups <p>)
is functionally equivalent to (pluralize (Fe-lockup p)). See fe, fe-
lookup.

(repn <p> fea)
means that the proposition <p> should be represented in the fea rep-
resentation. That is, the fea-<x> family of subroutines will be used
to retrieve <p>. Its lookup method, fea-lookup, takes as its argument
a proposition of the form (<> <x; > ... <Xy > <Xpyy >). It first
evaluates the term (<f> <x; > ... <xp >) by applying LISP sub-
routine corresponding to the function symbol <£>, {ie., on <£>s LISP
property,) to the list obtained by calling 1ookupval on each of the <x; >.
Fea-Lookup then compares this value to (lookupval <xn4; >) using
oum-=, and returns the resul:. (Fe~lookup just uses unifyp to produce
this comparison.) See computable-repn, fea-lookup, fea-lookups,
{e, funproc, repa.




fea-lookup

fea-lookups

finderrors

1q

£q-~lookup

fq-lookups

function

funproc (2)

funproc (3)
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(fea-lookup <p>)
is used to try to retrieve the proposition <p>. See fea, nuan-=, lisp.

(fea-lookups <p>)
is functionally equivalent to (pluralize (Fea-lockup p)). See fea, '
fea-lookup.

(finderrore)
runs through all the test files to find the errors in MRS. For each error it
find it prints out the result and expected result. It returns the number
of errors it finds

(repn <p> 1q)

means that the proposition <p> should be represented in the £q rep-
resentation. That is, the £q-<x> family of subroutines will be used to
retrieve <p>. By default, most functions, (including arithmetic ones,)
use this representation. Its lookup method, £q-lookup, takes as its ar-
gument a proposition of the form (<> <x; > ... <xy > <xp43 >J.
It first evaluates the term (<f> <x; > ... <x, >) by applying LISP
subroutine correaponding to the function symbol <£>, (i.e., on <f>s
LISP property,) to the list <x; > ... <x, >. Fq-Lookup then unifies
this value with <xn4; >, and returns the result. See computable-repn,
fe, £q-lockup, £q~lookups, £qm, repn.

(fq-lookup <p>)
is used to try to retrieve the proposition <p>. See £q 1isp.

(2q-1ookups <p>)
is functionally equivalent to (pluralize (Fq-lookup p)). See £q, £q-
lookup.

(function <x>)
means that <x> is a function. See singlep

(funproc <sym> <op>)

means that the operator <op> is procedurally attached to the tymbol
<sya>. E.g. after asserting (funprec + plus), (lookupval (+ 2 3
4)) will pass 2, 3 and 4 to the LISP procedure plus, and return its
answer, 9. Note that this looking-up mechanism is (intentionally) very
simple ~ while (lockup (+ 2 3 4 $a}) will work (returning a bind-
ing list which includes ($a . 9),) both (lookup (+ 2 3 $b 9)) and
(lookup (+ $4 0 $c)) will return nil. The (funproc <sya> <op>)
assertion will use funproc-assert to forward chain to assert (function
<sym>), and that all propositions (and terms) whose relation symbol
is <sya> should use the £q representation. See iq, function, funproc
(3), funproc-assert, relnproc.

(funproc <sym> <op> <repn>)

This is an embellishment of the binary funproc, listed under funproc
(2). After a (funproc + plus) assertion, both (lookup (+ 2 (+ 3
4) $x)) and (lookup (+ 2 3 4) 9.0)) will fail - i.e. return nil. One
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funproc-assert

getbdg

getbdgs

getval

getvals

getvar

ground

groundp

it

itf

includes

includes

can use the (optional) third argument, <repn>, tc permit two other,
more elaborate forms of functional procedural attachment. The (fun-
proc + plus FE) assertion handles the first problem. Now each em-
bedded ground term ~ here 2 and (+ 2 3) - will first be icokupvaled,
and the result passed to the LISP procedure plus. That is, this usee
the fe representation, rather than 1q. The assertion (funproc + plus
FEA) solves the second problem, causing (+ . &x) to use the fea rep-
resentation. The <repn> term defaults to £q if omitted. One can also
subatitute EVAL for fe, or = for fea. See fea, fe, £q, function, funproc
(2), funproc-assert, num-=, relnproc.

(funproc-assert (funproc <sym> <op> <repn>))
asserts the proposition (funproc <sym> <op> <repn>). (The same
subroutine is used to assert (funproc <sym> <op>).) See funproe.

(getddg <v> <p>)
is equivalent to (gstvar <v> (truep <p>)).

(getbdgs <v> <p>)
is equivalent to
(mspcar (lazbda (1) (getvar <v> 1)) (trueps p)).

(getval (<r> <x3 >...<xq >))
is equivalent to (getbdg <y> (<r> <x; > ...<xq > <y>)).

(getvals (<r> <x; >...<x4 >))
is equivalent to (getbdgs <y> (<> <x; >...<xq > <y>)).

(getvar <v> <1>)
looks up the binding of the variable <v> on the binding list <1>, fully
instantiates it with respect to the other variables on <1>, and returns the
result. For example, (getvar $x (($x . (£ $y)) ($y . a))) would
return (£ a).

(ground <x>)
states that the expression <x> is a ground expression, i.e. it contains
no variables. See lookup-ground.

(groundp <x>)
returns ¢ if and only if the expression <x> contains no variables.

(12 <p> <q>)
means that whenever proposition <p> is true, proposition <q> is true.
See be, br, fe.

(it <p> <q>)
is equivalent to (and (if <p> <q>) (if <q> <p>)).

(includes <c> <d>)
means that the theory <c> includes the theory <d>.

(includes <t; > <t3>)

" makes theory <t; > a supertheory of theory <t; > so that whenever
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indd
indbp

integer

inter
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<%; > is active <t; > will be active as well. In effect theory <t; >
includes all of the propositions in <t3 >. Both theory and activethe-
ories take these inclusions into account.

(indb <p>)

(indbp <p>)
means that a proposition equal to <p> up to variable renaming is stored
in the pr representation. See pr-indbp.

(integer <x>)
means that <x> is an integer.

(inter <x> <y> <b>)
means that list <b> is every element in list <x> that is in list <y>.

(inter nil $y nil)
(if (and (element $e $y) (inter $1 $y $a))

(inter (Se .

$1) 8y (Se¢ . $3)))

(if (and (not (element $e¢ $y)) (inter $1 $y $s))

(iater (Se .

$1) $y $s))

Procedural attachment: truep-inter. The lisp file set must be loaded from the mrs directory.

intersect

(intersect <x> <y>)
means that bag <x> and bag <y> have an equal element.

(if (or (element $a $s) (intersect $1 $s))
(intersect {Se . $1) $3))

Procedural attachment: truep-intersect. The lisp file set must be loaded from the mrs directory.

is

Just

Justify

kb

known

(is <x> <y>)
means that the value of the arbitrarily nested expression <x> is <y>.
See loerkup-is, truep-is.

(just <q> <m> <p; >...<py >)
means that the justification for the proposition named <q> is the infer-
ence method <m> and the premises <p; >, ... <pn >. See vhere, why,
justify, ta-unassert.

is a variable governing MRSs mechanism for recording justifications.
Wken nonNIL, its value is the name of the theory into which MRS will
save justifications for all deductions. (If justify has the value T, then
the current theory is used.) It is recommended that one house these
propositions in a temparary theory, and =pply empty to this theory when
these justifications are no longer needed. See why and where.

(kb to<g> <arg; >...<argy >)
is MRSs way of handling procedural attachments. It is equivalent to

(apply (getvar &f (trtruep (to<g> <arg; > ... <argy > &f)
<arg; > ... <argy >)). See to<g>.

(known <p>)
means that proposition <p> must be in the database for this to be true.
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length

lhfalse

lhtrue

lisp

lookup

lookup-=

lockup-bagof

lookup-ground

lookup-is

.

lookupapplicable

lookupbdg

lookupbdgs

lookupbylookups

See unknowa.

(length <1> <n>)
means that the list <1> is of length <n>.

(1hfalse f(ucprovablae <p>))
calls lookup on the proposition <p>. It returns nil if the answer is
non-nil; otherwize, it returns truth.

(lhtrue (provable <p>))
calls lookup on the proposition <p> and returns the answer.

(1isp <sym> <op>)
means that <op> is the Lisp subroutine used to compute the function
denoted by the symbol <syr>. E.g. (1isp + plus). See Computable-
Repn (Concept), fea-lookup, fe-lookup, £q-lookup, re-lookup, rq-
lookup, rqb-lookup, reb~1cokup, rqfm-lookups.

(lookup <p>)

checks whether the proposition <p> matches a proposition in the data
base and, if so, returns the correponding binding list. Lookup is an
abstract operator implemented using kb and tolookup.

(lookup-= (= <x> <y>))
calls unifyp on the expressions <x> and <y> and returns the rcsult.
See =,

{lookup-bagof (bagof <x> <p> <s>))
calls lookups on <p> and matches <s> against the sequence formed
by plugging the answers into <x>. Lookup-bagof is useful for perform-
ing extensional reasoning, since it allows one to designate the set of all
golutions to a problem.

(lookup-ground (ground <x>))
returns ((t p t)) if and only if the expression <x> contains no vari-
ables. See ground.

(lookup-is (is <x> <y>))
uses lookupval io evaluate the arbitrarily nested expression <x> and
tries to unify the answer with <y>. See is.

(lookupapplicable (applicable <k>))
tries to match <k> with each element of agenda and returns a corre-
sponding binding list if successful. See applicable.

(lookupbdg <v> <p>)
is equivalent to (getvar <v> (lookup <p>)).

(lookupbdgs <v> <p>)
is equivalent to (mapcar (lambda (x) (getvar <v> x)) (lookups
<p>)).

(lookupbylookups <p>)
is equivalent to (singularize (lookups <p>)).

- ne, i R Aol g T




Appendix C: Dictionary of pr- "icates and flags o7

" lookups (lookups <p>)
checks whether the proposition <p> matches any propositions in the
data base and returns a list of binding lists for each successful match.
Looicups is an abstract operator implemented using kb and tolookupa.

lookupsapplicable (lookupasapplicable (applicable <k>))
tries to match <k> with each element of agenda and returns list of
binding lists for each successful match. See applicable.

lookupabylockup (lcokupsbylookup <p>) .
is equivalent to (pluralize (lookup <p>)).

lookupval (lookupval (<f> <x; >...<x4 >))
is equivalent to (getvar <y> (lookup (<f> <x; > ... <xp >
<y>))).

lookupvals (lookupvals (<f> <x; >...<xa >))

is equivalent to (mapcar (lambda (x) (getvar <y> x)) (lookups
(<> <x1 > ... <xq > <y>))).

mand (mand <p> <1>)
is satisfied if (<p> x) is true for every x in the list <1>.

(mand $p nil)
(if (and ($p $x) (mand $p $1))
(mand $p ($x . $1)))

Procedural attachmeni: truep-mand. The lisp file set must be loaded from the mrs directory.

mandcan (mandcan <p> <1> <s>)
means that <a™ is the union of the lists y that satisfy (<p> x y) for
every element x in list <1>.

(zandcan $f nil nil)
(if (and ($f $x $y) (mandcan $f $1 $s) (union $y $s $t))
(mandcan $f ($x . $1) $t))

Procedural attachment: truep-mandcan. The lisp fle set must be loaded from the mrs directory.

mandcar (mandcar <p> <1> <s>)
means that <s> is the set of objects y that satisfy (<p> x y) for every
element x in list <1>.

(mandcar $f nil nil)
(if (and ($f $x $y) (mandcar $f $1 $s))
(mandcar $f ($x . 1) ($y . $s)))

Procedural attachment: truep-mapcar. The lisp file set must be loaded from the mrs directory.

matchp (matchp <x> <y>)
checks whether the expressions <x> and <y> can be unified by some
set of bindings for the meta-level variables in the two expressions. If so,
matchp returns the corresponding binding list for the variables in <x>
but discards the bindings for the variables in <y>. If the expressions
are not unifiable, matchp returns nil. All variables in <x> are treated
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aoem

menber

memlist

mlvarp

mrsapropos

mrsdemo

mrsdescribe

mrsdump

mrshtelp

mrsload

mrssave

mrstofunctions

not

as distinct from the variables in <y>, even though they have the same
name. For example, the expression (r &x b) matches (r a &x) with
result ((&x . a) (t p t)). See batchp.

(nen <e> <c>)
means that the element <e> is a member of the set of <c>. E.g., (mem

george people). See subclasas.

(nember <a> <s>)
means that <a> is a member of the list <s>, e.g. (member 5 (4 §
6)).

(menlist <x> <1>)
designates the task of checking whether the object <x> is in the list <1>.
Nemlist tries to unify <x> with esch element of <1> and succeeds once
for each match that it finds.

(mlvarp <xp>) :
returns a non-nil value if <xp> is a meta-level variable and otherwise
returns nil. A meta-variable in MRS is denoted by an ampersand prefix
(%) and is internally distinguished by the value ml, e.g. ka is a meta-level
variable. See varp.

(arsapropos <s>)
returns a liat of all LISP atoms containing <s> as a subsatring of their

printnames.

(mrsdemo) .
presants a demonstraticn of the range of capabilities in MRS.

(mrsdescride <x>)
prints out tha portion of this dictionary relevant to the object <x>.

(mrsdump <t> <1>)
saves the propositions from theory <t> in a form that allows them to
be reloaded with LISPs load command. Only those facts stored using
the propositional representation (i.e., pr) will be found.

(mrshelp <k>) provides informaticn about the MRS keyword <k>.

(nrsload <f>) .
loads a file <> of propositions.

(nrssave <t; > ...<t, > <f>)
saves the propositions from theories <%; > ... <t, >inthefile<t>ina
form that allows them to be reloaded with the mrsload command. Note
that this works only for propositions stored in the pr representation.

refers to the set of all MRS to<g> functions - e.g. (mem tostash
mrstofunctions). See domain.

{not <p>)
means that the proposition <p> is false. This is not equivalent to un-
known, or to unprovable.




num-=

num-=-threshold

nunber

or

output

pattern

perceive

perceive-indb
perceive-not

perceives

pl

pl-lookup
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(oum-= <x> <y>)

means that the expressions <x> and <y> are numerically eqnal ~ or
close enough to qualify. Procedurally, if <x> and <y> (are nonNIL
and) unify, that MGU value is returned. Otherwise, if both terms are
ground atomic numeric expressions, whose cifference is less than NUM-
=-THRFSHOLD, txuth is returned. E.g. (num-= 3 3.0) returns truth,
whereas (unifyp 3 3.0) returns cil. See fea, num-=-theshold.

is a special variuble whose value is the tolerance required for two numeric
values to be corsidered equal. It is initially set to 0.0001. See num-=.

(number <x>)
means that <x> is a num®er.

(or <p; > ...<pp >)
means that one or mors of the propositions <p; > ... <pn > is true.

(output <x>)
translates the expression <x> into pseudo-natural language in accor-
dance with programmer-defined templates. See template.

(pattern <d>)
returns the proposition corresponding to the proposition symbol <d>.

(perceive <p>)
determines whether the proposition <p> is true by direct observation
rather than inference. Perceive is an absiract operator implemented
usirg kb and toperceive. '

(perceive-indb (indb <p>))
.(purceive-not (not <p>))

(perceives <p>)
determines whether the proposition <p> is true by direct observation
rather than inference and returns a list of all binding lists for which it
succeeds. Perceives is an abstract operator implemented using kb and
torerceives.

(repn <p> pl)

means that the proposition <p> should be represented in the pl repre-
sentation, i.e. the pl-<x> family of subroutines will be used to stash,
unstash, and lookup <p>. TLis representation is particularly useful for
representing propositions involving unary functions, e.g. (arity mem-
ber 2). Note that propositions stored in this way are not associated
with any particular theory and cannot be found by PR-based routines
like prfacts or prcontents. See pl-lookup, pl-stash, pl-unstash,
Tepn.

(pl-lookup (<f> <a> <b>)) :
matches <b> against the <> property of the lisp atom <a>. <f> and
<a> must both be atoms. See pl.
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pl-stash

pl-unstash’

plug

pluralize

pr

pr-indbp

pr-lookup

ps-lookups

pr-stash

pr-unstash

prcontents

preferred

(pl-stash (<f> <a> <b>))
places <b> on the property list of <a> under the irdicator <I>. <f>
and <a> must both be atoms. See pl.

(pl-unstash (<f> <a> <b>))
removes the <> property from the lisp atom <a>, if its value was <b>.
<f> and <a> must both be atoms. See pl.

(plug <x> <1>)
returns a copy of the expression <x> fully instantiated with respect to
the variables on the binding list <1>. For exzmple, (plug (r $x $z)
(($x . (£ $y)) ($y . a))) would return (r (£ a) $z).

(pluralize <x>)
returns the plural-value of <x>. That is, it returns (1ist <x>) if <x>
is nonNIL, or nil otherwise, See lookupsbylookup, truepsbyiruep.

(repn <p> pr)
means that the proposition <p> should be represented in the pr repre-
sentation, i.e. the pr-<x> family of subroutines will be used to stash,
unstash, and lookup <p>. This is MRSs default representatiorn. Propo-
sitions stored in this way can be associated with any number of theories
and will be available for use only when one or more of those theories are
active. See pr-lookup, pr-indbp, pr-stash, pr-unstash.

(pr-indbp <p>)
checks whether there is a proposition in the pr representation that is
identical to <p> up to variable renaming and, if so, returns its proposi-
tion symbol. See pr.

{pr-lookup <p>)
uses indexp and batchp to find any matching proposition in the pr
representation and, if successful, returns the corresponding binding list.
See pr.

(pr-lookups <p>)
uses indexp and batchp to find any matching proposition in the pr rep-
resentation and returns a list of all binding lists for which it is successful.
See pr.

(pr-stash <p>)
stores <p> in the propositional data base and returns the corresponding
proposition symbol. See pr.

(pr-unstash <p>)
removes the proposition <p> from the propositional data base. See pr.

(prcontents <th>)
prints out all propositions in theory <th>. Only those facts stored using
the pr representation will be found.

(preferred <j> <k>)
states that the task <j> is preferred to the task <k>. The preferredis




prfacts

primitive

property

prepositions

provable

Ire

re-lookup

re-lookups

reb
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important in that <k> is disqualifed whenever there is an applicable
task that is preferred to it. This relation is the primary way of influ-
encing task ordering in MRS. It has effect only when one of the switches
executable or preferred has a non null value. See disqualified,
scheduler.

(prfacts <n>)
prints out all propositions about <n> in the currently active thecries.
Only those facts stored using the pr representation will be found.

(primitive <k>)
states that the operator in the task <k> is a primitive machine operation,
i.e. a Lisp subroutine.

(property <x> <y> <z>)
means that the atom <x> has <y> as its <z> property.

(domain <x> <i> propositions)
means that the <i>th argument to the subroutine <x> should be a
proposition. See domain.

(provable <p>)
means that proposition (provable <p>) is true if <p> can be proved
using the normal mechanisms for proving <p>. See unprovable.

(repn <p> re)

means that the proposition <p> should be represented in the re rep-
resentation. That is, the re-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, re~lookup, takes as its argument a
proposition of the form (<xr> <x; > ... <xn >) and calls lookupval
on each of the <x; >. If there is a LISP subroutine (i.e. on <r>s
LISP property,) corresponding to the relation symbol <r>, re-lookup
applies the subroutine and returns ((t p t)) if that subroutines re-
turns nonNIL; otherwise it return nil. See computable-repnm, repn,
re-lookup, re-lookups, rq, reb, relnproc.

(re-lookup <p>)
is used in trying to retrieve the proposition <p>. See re.

(re-lookups <p>)
is functionally equivalent to (pluralize (Re-lcokup p)). See re, re-
Yookup. '

(repn <p> red)
means that the proposition <p> should be represented in the reb rep-
resentation. That is, the reb-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, reb-lookup, takes as its argument a
proposition of the form (<r> <z; > ... <x, >). If there is a LISP
subroutine (i.e. on <r>s LISP property,) corresponding to the relation
symbol <r>, reb-lookup applies the subroutine to these arguments, and
returns the result (assumed to be a binding list). E.g. (repn (unifyp
$a $b) reb). See computable-repn, repn, reb-lockup, reb-lookups.
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B redb-lookup (reb-lookuvp <p>)
: is vzed in trying to retrieve the proporition <p>. See red, relnproc. &

redb-lookups (red-lockups <p>)
is functionally equivalent to (pluralize (red-lookup p)). See reob,
reb-lookup.

reba (repn <p> redm)
, means that the proposition <p> should be represented in the reba rep-
\ resentation. That is, the reba-<x> family of subroutines will be nsed
L to retrieve <p>., Its lookup method, reb-lookup, takes as its argu-
ment a propoeition of the form (<r> <x; > ... <x4 >). If there is
B a LISP subroutine (i.e. on <r>s LISP property,) corresponding to the
' relation symbol <r>, reb-lockup applies the subroutine to these argu-
ments, and returns the result (assumed to be a list of binding lists). See
cozputable-repa, reb, reba-lookup, redb-lookups, relnproc, zepn.

reba-lookup (zeba-lockup <p>)
is functionally equivalent to (singularize (reb-lookup p)). See
rebm, reb-lookup.

relnproc (2) (relnproc <sym> <op>)

is a8 way of procedurally attaching the operstion <op> to the relation
symbol <sym>. E.g. after asserting (relsproc < greater-than),
(lookup (< 2 4)) will pass 2 and 4 to the LISP procedure greater-
than, and seeing its answer is nonNIL, the 1ookup call will retarn ((t p
t)). (It would otherwise return NIL.) The (relaproc <sya> <op>)
assertion will use relnproc-assert to forward chain to assert that all
propoesitions whose relation symbol is <sym> should use the rq repre-
sentation. See funproc, relnproc (3), relnproc-assert, rq.

relnproc (3) (relnproc <sym> <op> <repn>)

There are various possible limitations with binary relnproc mecha-
nism, listed above under reloproc (2). First, after asserting (rel-
nproc < greater-than),the query (lookup (< 2 (+ 1 3))) willre-
tura nil. Second, after asserting (relnproc unify unifyp), (leokup
{unify (a $y) ($x b))) will only return ((t p t)), ignoring the ($x
. a) and ($y . b) bindings. The (optional) third argument above,
<repn>, permits other, more elaborate forms of relational procedural
attachment. The (relnproc < greater-than AE) assertion handles
the first problem. Here each embedded ground term - here 2 and (¢ 8
3) - will first be lookupvaled, and the result passed to the LISP pro-
cedure greater-than. This uses the xe representation, rather than rq.
The (reloproc unify unifyp RQB) assertion handles the second prob-
lem, as the (unify &x &y) facts will now use the RGB representation.
Similarly <repn> can be set to RQBN, REB, REQB or RQFN. If omitted,
<repn> here defauits to rq. One can also use the aliases EVAL for RE,
BindList for RQB, MBindList for REBN, EBindList for REB, MEBindList
for REBN, or NultiFn for RQFM. See relnproc (2), relnproc-assert,
Te, reb, reba, rq, rqb, rqda, zqfn.
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relnproc-assert

repn-assert

repa-method

Trepn-unassert

repns

residue

residues
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(zelnproc-assett (relnproc <sya> <op> <repn>))
asserts the preposition (relnproc <sym> <op> <repn>). (Therame
subroutine is uesd Lo asrert (relnproc <sym> <op>).) See relnproc.

(repa <p> <rpa>)

means that the reprezentation <rpa> should be used to store and ac-
cezs the proposition <p>. (See repns entry for list of allowable repre-
sentations.} See achieve, repn-sssert, repo-method, repa-unasser?,
repno.

(repn-ssse.: (repn <prop> <rpn>))

uses the repn-method declarations associated with this representation
<rpn> to stash (in a forward chaining manner) the appropriate to<x>
statements for this <prop>. The domain specification of that operation
is used to determine the exact form of the assertion. E.g. calling repan-
assert on the assertion (repn (father &c &d) pl) will generate the
statements (tolookup (father &c &d) pl-lookup), and (tolookups
(father &c &d) pl-lockups),as (domaim lookup 1 propositicns).
(Later it may deal with terms, and assert facts like (tolookupval
(father &c) pl-lookupval), (via (domain lookupval 1 terms)) as
well.) See domain, repn, repn-methed, repn-unassert.

(repn-method <rpn> <op> <mthd>)
means that the LISP subroutine <athd> should be used to perform the
<op> operation, in the representation <rpa>. E.g. (repn-methed pr
tostash pr-stash). See repn-assext, repn, repn-unassert.

(repa-unassert (repn <prop> <rpa>))
undoes the effects (read stashes) of repn-assert. See domain, repn,
repn-assert, repa-nethod.

(mem <r> repns)
means that the symbol r refers to & representations. Currently existing
representations include ent, dl, pl, pr, t1 and achieve-perceive, all
of which store results; and fe, fea, £g, re, reb, rebn, rq, rqb, rqdam and
rqfm which do not. See repn, computable-repn.

(residue <p>)
tries to prove the proposition <p>. It differs from truep in that it is
allowed to make assume any proposition asserted to be assumable; and,
if it is successful in proving <p>, it returns a list of its assumptions. The
set of assumptions is called the residue of <p>. Residue is an abetract
operator defined using kb and toresidue. See assumable.

(residues <p>)
tries to prove the proposition <p>. It differs from trueps in that it is
allowed to make assume any proposition asserted to be assumable; and,
if it is successful in proving <p>, it returns a list of lists of assumptions.
The set of assumptions is called the residue of <p>. Residue is an
abstract operator defined using kb and toresidue. See assumable.
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regolution

resolutionresidue

resolutionresidue

resolutionresidues

resolutions

Iq

(rescluticn <p>)

trics to prove the proposition <p>. If successful, it returns an appropri-
ate binding list; othervrise, it returns nil. Resolution is an implemen.
tation of linear-input resciution uzing the set of suppart control strategy.
In operation, resolution negates <p> and converts it to conjunctive
form, stashes tle rezults in a locally bound theory, and invokes the sub-
routine rod .sp on each conjunct. See rsdisp, scheduler, tracetask,
cnf,

(zesclutionresidue <p>)

tries to prove the propesition <p>. If succesful, it returns a list of assum-
able propositons which, when added to the data base, imply <p>. Res~
olutionresidue is an implementation of linear-input resolution using
the eet of support control strategy. In operaticn, resolutionresidue
negates <p> and converts to conjunctive form, staches the results in a
locally bound theory, and invokes the subroutine rrdisp on each con-
junct. See rrdisp, scheduler, tracetask, cal.

(zresolutionresidue <p>)

tries to prove the proposition <p>. If succesful, it returns a list of assum-
able propositons which, when added to the data base, imply <p>. Res-
olutionresidue is an implementation of linear-input resolution using
the set of support control strategy. In operation, resolutionresidue
negates <p> and converts to conjunctive form, stashes the results in a
locally bound theory, and invokes the subrcutine rrdisp on each con-
junct. See rxdisp, scheduler, tracetask, cunf

(resolutionresidues <p>)

tries to prove the proposition <p>. It returns a list of all assumption lists
for which it is successful. Resolutionresidues is an implementation of
linear-input resolution using the set of support control strategy. In op-
eration, resolutionresidues negates <p> and converts to conjunctive
form, stashes the results in a locally bound theory, and invokes the sub-
routine rrdiep on each conjunct. See rrdisp, scheduler, tracetask,
enf.

{resolutions <p>)
tries to prove the proposition <p>. It returns a list of all binding lists
for which it is successful. Resolutions is an implementation of linear
input resolution using the set of support control strategy. In operation,
resolutions negates <p> and converts to conjunctive form, stashes the
results in a locally bound theory, and invokes the subroutine rsdisp on
each conjunct. See redisp, scheduler, tracetask, cnf.

(repn <p> 1q)

means that the proposition <p> should be represented in the req rep-
resentation. That is, the rq-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, rq-lookup, takes as its argument
a proposition of the form (<r> <x; > ... <x4 >). If there is a
LISP subroutine corresponding to the relation symbol <r>, (i.e. on

e e




rq-lookup

rq-lookups

rgqd

rqb-lookup

rgb-lookups

rqbm

rqbm-lookup

rqfm
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<r>s LISP property,) rq-lookup applies the subroutine to the argu-
ments (<x; > ... <x, >), and returns truth if the result is nonnil;
or nil. By defsult, most relations, including arithmetic ones, usze this
reprezentation. See re, rq-lookup, rq-lookups, reloproc, repn.

(rq-lookup <p>)
is vsed in trying to retrieve the propositicn <p>. See rq, 1isp.

(rq-lookups <p>)
is functionally equivalent to (pluralize (Rq-lookup p)). See rq, rq-
lookup.

{repn <p> rgd)

means that the proposition <p> should be represented in the rqb rep-
resentation. That is, the rqdb-<x> family of subroutines will be used to
retrieve <p>. Its lookup method, rqb~lockup, takes as its argument a
proposition of the form (<r> <x; > ... <x, >). If there is a LISP
subroutine corresponding to the relation symbol <r>, (ie. on <r>s
LISP property,) rqb-lookup applies the subroutine to the arguments
(<x; > ... <x4 >), and simply returns the result (assumed here to be
a binding-list). See cozputable-repn, reb, rqb-lookup, rqb-lookups,
reloproc, repn.

(xqb-lockup <p>)
is used in trying to retrieve the proposition <p>. See rqd, rqbm, 1isp.

(rqb-lookups <p>)
is functionally equivalent to (pluralize (Rgb-lookup p)). See rqb,
rqb-lookup.

(repn <p> rqbm)

means that the proposition <p> should be represented in the rqba rep-
resentation. That is, the rqba-<x> family of subroutines will be used
to retrieve <p>. Its lookup method, rqb-lookup, takes as its argu-
ment a proposition of the form (<r> <x; > ... <x, >). If there is
a LISP subroutine corresponding to the relation symbol <r>, (i.e. on
<r>s LISP property,) rqb-lookup applies the subroutine to the argu-
ments {(<x; > ... <X, >), and simply returns the result (assumed here
to be a list of binding-lists). See computable-repn, rqb, rqbm-lookup,
rgb-lockup, relnproc, repn.

(rqda-lookup <p>)
is functionally equivalent to (singularize (Rgb-lookup p)). See
rqbm, rgb-lookup.

(repn <p> rqfm)

means that the proposition <p> should be represented in the rqfa rep-
resentation. That is, the rqfa~<x> family of subroutines will be used
to retrieve <p>. Its lookup method, rqfm-lookups, takes as its argu-
ment a proposition of the form (<r> <x, > ... <xp > <xXpyp >).
It first evaluates the term (<r> <x; > ... <z, >) by applying LISP
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Q}, subroutine correspouding to the function symbol <r>, (i.e, on <x>s
LISP property,) to the liat <x; > ... <x4 >. This returns a list of val- j ’
| ues. Rqfa-lookupse then unifies esch of these with <x,4) >, returning P [
' the list of results. Ses conputable-repa, rqfa~lookup, rqfn-lookups, ; o/
relnproc, repzn. : .

B MR
. .

i3 rqfa-lookup (rqf=-lockup <p>)
| ia functionally equivalent to (sirgularize (Ryfm-lookups p)). See )
rqfs, rqfa-leokups. / ‘
rqf=-lockups (rqfm-lookupa <p>) 1 il

is used to retrieve the propotitions <p>. See rqfa, 1isp.

rrdisp (rrdisp <1> <cl> <al> <th>) 2 I
performs one resolution step in trying to derive a contradiction from B ’
the propositions on the list <1>, The list <c1> contains & list of as-
sumptions made in preceding steps. The binding list <al> holds the L
bindings of the variables from preceding steps. The theory <th> holds T R
the conjuncts from the negated goal. To be used, all propositions must 1
be in conjunctive form. In addition, only base-level variables are treated
as variables, any meta-level variables are treated as constaats. Given a
goal list (<p> . <1>), rrdisp generates subgoals by negating <p>
to get <q> and looking in the data base for propositions of the form
<q> or (or ... <q> ...). It also uses trueps to discover whether p
is assumable. If it is assumable and if it is a ground proposition after
plugging in the variable bindings returned by trueps, brdisp creates a
new theory that includes <th>, asserts the proposition in that theory,
and generates appropriate subgoals. The asse ted propositions are useful
in that they make possible consistency chec:. ¢ before making assump-
tions in subsequent steps. The order in which multiple zzdisp tasks are
executed can be influenced via appropriate preferred propositions. See
assumable, cnf.

e ‘{’

zsdisp (rsdisp <1> <al> <th>) ,

performs one resolution step in trying to derive a contradiction from
the propositions on the list <1>. The binding list <al> holds the
bindings of the variables from preceding steps. The theory <th> holds
the conjuncts from the negated goal. To be used, all propositions must
be in conjunctive form. In addition, only base-level variables are treated
as variables, any meta-level variable is treated as a constant. Given a
goal list (<p> . <1>), rsdisp generates subgoals by negating <p>
to get <q> and looking in the data base for propositions of the form
<q> or (or ... <q> ...). The order in which multiple radisp tasks
are executed can be influenced via appropriate preferred propositions.
See enf.

runnable (runnable <k>)
states that the task <k> is runnable. A runnable task is applicable
if its operator is a Lisp subroutine; otherwise, it is assumed to be a de-
fined task, and a corresponding invocation of exec is applicable. In




samep

scheduler
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MRS demons are unplemented via runnable, c.g. to tell the system that
it should print a greeting whenever the user aszerts a proposition that
someone is logged, one simply asserts (4f (loggedin $x) (runnable
(print hello t))) and (toessert (loggedin &x) fc). See appli-
cable, scheduler.

(sanep <x> <y>)

determines whether exprezsions <x> and <y> are the same under con-
sistent variable renaming, and if so returns a binding list for the variables
in <x>. For example, (p $x $y $x) is the same as (p 8y $x $y) but
not (p $x $y 8y).

(scheduler)
8cheduler is the heart of the MRS system. It is a simple deliberation-
action loop that, at each point in time, decides on an executable task,
executes it, and repeats. In its most general state, the choice of task
is made by calling txtruep to find a task <k> such that (executable
<k>) is true. After the task is performed, the fact is recorded by call-

" ing trassert on the proposition (executed <k>). In its initial state,

setdiff

MRS contains a number of propotitions to help scheduler decide on an
executable task. In particular, a task is executable if it is applicable
and is not disqualified. Once a task becomes applicable, it remains
applicable until it is executed. One way an applicable task can be dis-
qualified is for there to be another applicable task that is preferred
toit. A runnable task is applicable if its operator is a Lisp subroutine.
Otherwise, it is assumed to be a defined task, and a corresponding exec
task is applicable.

This full generality is available only if the switches executable and ex-~
ecuted are both non-nil. For reasons of efficiency, both of these switches
are initially set to ni!, and an optimised version of this loop is used in-
stead. In particular, the set of applicable tasks is kept as the value
of the variable agenda, and an executabls task is obtained from this
list. If the switch preferred is nil, the first element of the list is taken;
otherwise, scheduler uses trtruep to compare the elements using the
preferred relation. This optimisation is fully consistent with the ax-
ioms described above. However, it is recommended that the user not
change the settings of executable and executed without careful fore
thought. Debugging facilities for the scheduler architecture are not very
good at this point. However, rudimentary debugging is possible using
tracetask.

(setdiff <x> <y> <b>)
means that list <d> is all the elements in list <x> that are not in list
<y>.

(setdiff nil $y nil)
(if (and (not (element $e $y)) (setdiff $1 $y $s))

(setdiff (Se .

$1) Sy (Se . $8)))

(if (and (element $e $y) (setdiff $1 $y $s))
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(setdiff ($a .

$1; 8y $s))

Procedural attachment: truep-setdiff. The lisp file set must be lozded from the mrs directory.

setof

(setof <x> <p> <s>)
means that <s> is the set of all objects <x> that satisfy <p>.

(if (and (bagof $x $p $b) (elementsin $b $a))

(setof $x $p

$s))

Procedural attachments: truep-setof and lookup-setof. The lisp file set must be loaded from

the mrs directory.

einglep

singularize

stash

stash-and

stashapplicable

subclass

subset

(subset nil $y)

(singlep <p>)
returns ¢ when the proposition <p> has at most one solution, i.e. when
it is a ground proposition or an atomic proposition with a fanctional
operator and ground arguments. See function.

(siogularize <x>)
returns the singular-value of <x>. That is, it returns (car <x>). See
lookupbylookups, truepbytrueps.

(stash <p>)
stores the proposition <p> in the data base. S8tash is an abstract oper-
ator implemented using kb and tostash.

(stash-and (and <p; >...<p, >))
separately stazhes each of the conjuncts <p; >,..., <pa >.

(stashapplicable (applicable <k>))
adds <k> to agenda. See applicable.

(subclass <c¢; > <¢3 >)
means that the set <c; > is a subset of <¢; > - that is, all members of
<¢3 > are members of <¢; >. E.g., (subclass nunber integer). See
clanses.

(subsat <x> <y>)
means that every element of the list <x> is an element of the list <y>.

(if (and (element $e $y) (subset $1 $y))

{subset ($e .

$1) $y))

Procedural attachment: truep-subset. The lisp file set must be loaded from the mrs directory.

succeed

task

(succeed <z>) .
is & special control form. Executing this form causes the enclosing doable
task to succeed or the enclosing undoable task to fail. In addition, all
other subtasks are discarded.

In MRS the task of performing an operator <op> with arguments
<Xy 3,000y <Xn > is written (<op> <x; > ... <x, >. The oper-
ator in task <k> may be a Lisp subroutine, an MRS subroutine defined
using def, or a special control form like doand, dozble, or doall. If




tbd

template

texms

test

thassert

theories

theory

thfalse

threpn
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the operator is a Lisp subroutine, the task must have have aa additional
argument for the output value, and it will succeed only if the last ar.
gument unifies with the result of calling the subroutine on all but the
last argument. For example, the task (cdr (a b ¢) (&x . &y)) will
succeed with the variable &x bound to b and the variable &y bound to
(c). See axecute, executes.

(tb <op> <x1>...<xa>)
makes the task (<op> <xi>...<xn>) applicable by placing it on the
agenda. See applicable, agenda.

(template <x> <t>)

means that expression <x> should be output as <t>. In particular,
if an expression <y> matches <x> with binding list <al>, (output
<x>) returns a copy of <t> in which each variable is replaced by the
result of calling output on its value in <al>. Templates are used by
output. *

(domain <x> <i> terms)
means that the <i>th argument to the subroutine <x> should be a
term. See domain.

(test <file>)
runs the single test file provided <file> and prints out any errors.
Returns the number of errors found in the file.

(thassert <p> <th>)
binds theory to <th> and asserts the proposition <p>. See assert,
theory.

(dozmain <x> <i> theories)
means that the <i>th argument to the subroutin# <x> should be a
theory. See domain.

has as its value the name of the current theory. All propositions stored

in the data base via pr-stash are associated with the theory named
as the value of theory at the time of the stash. One can associate
a proposition with more than one theory by repeating the call to pr-
stash with different values for theory. Calling pr-unstash removes a
proposition only from the current theory. The theory named as the value
of theory is always active, i.e. the propositions associated with it are
available for retrieval by pr-lookup and pr-lookups. See pr-stash,
pr-unstash, pr-lookup, and pr-lookups. -

(thfalse (unprovable <p>))
calls truep on the proposition <p>. It returns nil if the answer is
non-nil; otherwise, it returns truth.

(threpn <p> <rpan> <th>)
means that the representation <rpn> should be used to store and ac-
cess the proposition <p> when <th> is an active theory. The effect
of having conflicting representations for a proposition stored in different
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thstash

thtrue

thunassert

thunstash

tl

tl-lookup

tl-stash

tl-unstash

to-unassert

to<g>

toachieve

theoties is undefined when both theories are active. (See repns entry for
jist of allowable representations.) See activate, deactivate, theory,
achieve, xepns, repn, repn-agaart, repn-method, repn-unassert.

(thstarh <p> <th>)
binds theory to <th> and stashes the proposition <p>. Sec stash,
theory.

(thtrue (provable <p>))
calls truep on the proposition <p> and returns the answer.

(thunassert <p> <th>)
binds theory to <th> and unasserts the propontxon <p>. See
unassert, theory.

(thunstash <p> <th>)
binds theory to <th> and unstashcs the proposition <p>. See unstash,
theory.

(repn <p> t1)

means that the proposition <p> should be represented in the t1 repre-
sentation, i.e. the t1-<x> family of sabroutines will be used to stash,

unstash, and lookup <p>. This representation is particularly useful for

storing propositions involving unary relations, e.g. (function £). Note
that propositions stored in this way are not associated with any partic-
ular theory and cannot be found by PR-based routines like prfacts or
prcontents. See repn, t1-lookup, tl1-stash,tl-unstash

(tl-lookup (<r> <a>)
returns truth if there is an <r> property on the atom <a>. Both <r>
and <a> must be atoms. See tl.

(t1-stash (<r> <a>))
sets the <r> property of the lisp atom <a> to t. Both <r> and <a>
must be atoms. Sce tl.

(tl-unstash (<r> <a>))
removes the <r> property of <a>. Both <r> and <a> must be atoms.
See tl.

(ta-unassert <p>)
calls unstash on <p> and then calls unassert on any proposition all of
whose justifications depend on <p>. See just.

(to<g> <p> <I>)
means that the subroutine <£> is to be called in performing the action
<g> on argument <p>. Each of MRSs user-level commands has associ-
ated with it a relation that specifies the subroutine to be used in carrying
out that command. The relation is named by prefixing the commands
name with to, e.g. toAssert from assert. See kb.

(toachieve <p> <m>)
means that the method <m> should be used to perform the achieve ac-
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toperceives
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tion for all propositions which match <p>. Sce kb, achieve, to<x>.

(toassert <p> <n>)
means that the rmethod <a> should be used to perform the assert
action for all propositions which match <p>. See kb, assert, tc<x>,

(tocache <p> <m>)
means that the method <a> should be used to cache propositions which
match <p>. (This <e> will only be used when the variable cache has
a nonliIL value.) See cache, cachebystash, to<x>

(tolookup <p> <m>)
means that the method <a> should be used to determined the lookup
value for all propositions which match <p>. See kb, lookup, to<x>,
tolookups.

(tolookups <p> <mn>)

means that the method <m> should be used to determined the lookups
values for all propositions which match <p>. See kb, lookups,
to<x>, tolookup.

(toperceive <p> <a>)

means that the method <m> should be used to determined the per-
ceive value for all propositions which match <p>. See kb, percsaive,
to<x>, toperceives.

(toperceives <p> <m>)

means that the method <m> should be used to determined the per-
ceives values for all propositions which match <p>. See kb, per-
ceives, to<x>, toperceive. '

(toplevel)
is a read-execute-print loop. See execute.

(tostash <p> <a>)
means that the method <m> should be used to perform the stash action
for all propositions which match <p>. See kb, stask, to<x>.

(totruep <p> <m>)

means that the method <m> should be used to determined the truep
value for all propositions which match <p>. See kb, truep, to<x>,
totrueps.

(totrueps <p> <m>)
means that the method <m> should be used to determined the trueps
values for all propositions which match <p>. See kb, trueps, to<x>,
totruep.

(tounachieve <p> <m>)

means that the method <m> should be used to perform the unachieve
action for all propositions which match <p>. See kb, unachieve,
to<x>.
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tounassert

tounstash

tracetask

trassert

trlookup

trlookups

trstash

trtruep

(tounassert <p> <n>)
means that the method <n> should be used to perform the unasaert ac-
tion for all propositions which match <p>. See kb, unassert, to<x>.

(tounztash <p> <an>)
means that the method <a> should be used to perform the unstash ac-
tion for all propositions which match <p>. See kb, unstash, to<x>.

(tracetask <p>)
As each task is executed, tasktrace prints out the name of the subrou-
tine and its arguments provided they match <p>. If there is no <p>
argument in the subroutine call then a list of all tasks which are to be
traced is printed. See untracetask.

(trassert <p>)

asserts the proposition <p> and performs forward chaining as appro-
priate. Trassert is MRSa meta-level assertion routine and is called by
many MRS subroutines. The default is simply to stash a proposition,
but there are also built-in procedural attachments for propositinns con-
taining certain special relations (stored on each relation as the assert
property). A frequently used procedural attachment is the depth-first
forward chaining program trfe.

(trlookup <p>)

locks ap the proposition <p>. If snccessful, it returns the correspond-
ing binding list; otherwise, it returns nil. Trloookup is one of MRSs
meta-level lookup routines and is called by many MRS subroutines. The
default procedure uses indexp and matchp to find any matching propo-
sitions in the pr representation, but there are also built-in procedural
attachments for propositions containing many common relations {stored
on each relation as its lookup or lookups property).

(trlookups <p>)

looks up the proposition <p> and returns a binding list for sach match-
ing proposition that it finds. Trlookups is one of MRSs meta-level
lookup routines and is called by many MRS subroutines. The default
procedure uses indexp and matchp to find any matching propesitions in
the pr representation, but there are also built-in procedural attachments
for propositions containing many common relations (stored on each re-
lation as its lookup lookups property).

(trstash <p>)
stashes the proposition <p>. Trstash is MRSs meta-level stash routine
and is called by many MRS subroutines. T'he default is pr-stash, but
there are also built-in procedural attachments for propositions containing
many common relations (stored on each relation as its stash property).

(trtruep <p>)
tries to prove the proposition <p>. If successful, it returns a corre-
sponding binding list; otherwise, it returns nil. Trtruep is one of MRSs
meta-level theorem proving routines and is called by many MRS subrou-
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tines. Only meta-level variablea are treated as variables by trtruep, and
all base-level variables are treated as constants. The inference procedure
used is the depth-first backward chaining program trbe, but there are
also built-in procedural attachments for propositions containing many
commen relations (stored on each relation as its truep or trueps prop-
erty).

(trtrueps <p>)

tries to prove the proposition <p> and returns a list of all binding lists
for which it is successful. Trtrueps is one of MRSs meta-level theorem
proving routines and is called by many MRS subroutines. Only meta-
level variables are trzated as variables by trirueps, and all base-level
variables are treated as constants. The inference procedure used is the
depth-first backward chaining program trbcs, but there are also built-
in procedural attachments for propositions containing many common
relations (stored on each relation as its truep or trueps property).

{truep <p>) .
tries to prove the proposition <p>. If it is successful, it returns a binding
list for the base-level variables in <p>; otherwise, it returns nil. Truep
is an abstract operator implemented using kb and totruep.

(tzuep-bagof (bagof <x> <p> <s>))
calls trueps on <p> and matches <8> against the list formed by plug-
ging the answers into <x>.

(truep-is (is <x> <y>))
uses getval to evaluzte the arbitrarily nested expression <x> and tries
to unify the answer with <y>. See is.

(truepbytrueps <p>)
is equivalent to (singularize (trueps <p>)).

(trueps <p>)
tries to prove the proposition <p> and returns a list of all binding lists
for which it is successful. Trueps is an abstract operator implemented
using kb and totrueps.

(truepsbytruep <p>)
is equivalent to (pluralize (truep <p>)).

(trunassert <p>)
unasserts tke proposition <p>. Trunassext is MRSs meta-ievel unasser-
tion routine and is called by many MRS subroutines. The default is
simply to unstash a proposition, but there are also built-in procedural
attachments for propositions containing certain special relations (stored
on each relation as the unassert property).

(trunstash <p>)
unstashes the proposition <p>. Trunstash is MRSs meta-level unstash
routine and is called by many MRS subroutines. The default is pr-
unstash, but there are also built-in procedural attachments for proposi-
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tions containing many common relations (stored on each relation as its :
unstash property). 5
truth has ((t p t)) asits value. The value of truth occurs as the last pair
in binding lists returned by MRSs retrieval and inference procedures.
tutor (tutor) 1
runs an interactive tutor that introduces one to the basic representation
and infereace mechanisms of MRS.

Bop wor < i o

unassert (unassert <p>)
removes the proposition <p> from the data base and performs all appro-
priate inference. Unassert is an abstract operator implemented using

i B TN o oo

kb and tounassert.
unassert-and (unassert-and (and <p; > ...<pp >)) B
scparately unasserts each of the conjuncts <p; >,..., <pn >. T
unasgsert-iff (unassert-iff (if <p> <q>)) ) ’3
asserts (if <p> <q>) and (if <q> <p>). 2 .
undoable (undoable <k>) :

designates the task of trying to execute the task <k>. The task (un-
doable <k>) succeeds only if there is no successful execution of <k>.
Note that as a result of the current iinplementation, it is not possible to
interleave subtasks outside a doable task with those inside. See succeed
and cut.

unifyp (unifyp <x> <y>)
determines whether expressions <x> and <y> are unifiable, and if so
returns their most general unifier. Unifyp differs from matchp in that
multiple occurrences of the same variable in both <x> and <y> are not
treated as distinct variables. For example, (p $x b) and (p a $x) are
not unifiable, but they do match.

unincludes (unincludes <t; > <tz >)
removes any includes link between theories <t; > and <t; >. See
includes.

union (union <x> <y> <b>)

means that list <b> is the lists <x> and <y> appended together.

(union nil $y $y)
(i (union $1 $y $o)
(unicn ($x . $1) 8y ($x . $8)))

Procedural attachment: truep-union. The lisp file set must be loaded from the mrs directory.
unknown (unknown <p>)

means that if proposition <p> is not in the database then (unknown
<p>) is true. See known.

unprovable (unprovable <p>)
means that proposition (unprovable <p>) is true if <p> cannot be
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proved using the normal mechanisms for proving <p>. See provable.

(unstasgh <p>) )
removes the proposition <p> from the data base. Note this is not equiv-
alent to asserting the negation of <p>. Unstash is an abstract operator
implemented uzing kb and tovuu-ash,

(unstash-and (and <p; > ... <p, >))
separately unstashes each of ti-> conjuncts <pr >,..., <pa >.

(unstashapplicsble (applicable <Xk>))
remcves <k> from agenda. See applicable.

(untracetask <p>)
untraces the task <p>. If there is no <p> argument in the subrou-
tine call then i untraces =1 <p> that are currently being traced. See
tracetask.

(value <x> <y>)
means that the atom <x> has value <y>.

(variable <x>)
means that the symbol <x> is a variable.

{varp <xp>)
returns a non-nil value if <xp> is a variable and otherwise returns nil.
See blvarp and mlvarp.

(vhexre <p>)
prints out a message for each recorded justification in which <p> is a
premise. The message includes information about the justified proposi-
tion, the inference method, and all premises. See justify, just.

(why <p>)
prints out a message for each recorded justification for the proposition
<p>. The message includes information about the relevant inference
method and all premises. See justify, just.
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